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0 APPLICATIONS OF CONE THEORY

TO BOUNDARY VALUE PROBLEMS

Gerald Diaz, Ph.D.

University of Nebraska, 19S9

Adviser: Allan C. Peterson

We are-concerned with the existence and comparison of cigcnvalues for the

eigenvalue problem (-1)"_'Lu = AP(t)u, Tu = 0, where Tu = 0 are appropriate

boundary conditions at points in the interval [a,b]. Here u(t) is an m-column

vector function, P(t) is a continuous m x m matrix function on [a, b] and Lu =

u ) + p,(t)u(n- 1 ) + + p,(t). Wivill assume that the corresponding scalar

equation Ly = 0 is right disfocal on [a, b]. We-get ou existence and comparison

results by using several abstract theorems from cone theory in a Banach space.

We first consider the bounda y'value problem u On+ r(t)u = 0, u(')(a) = 0,

i = 0,1,..., k-I and u(-')(b) n -2,...,n-k. Using comparison theorems

for Green's functions due to Peterson and Ridenhour we are able to apply cone

theory to get the exsitencc and uniqueness of an eigcnvector in a cone. Further, we

can give comparison results between the smallest positive eigenvalues of different

eigenvalue problems.

We also examine the n-point right focal eigenvalue problem (-1)"-Lu =

AP(t)u, u(-)(ti) = 0, for i = 1, 2,..., n. Assuming that Ly = 0 is right disfocal

we give an explicit form for the Green's function. Under certain sign conditions0



on the Green's function and conditions on P(t), we can show the existence of

a smallest positive eigenvalue. And with further conditions on P(t), that its

corresponding eigenvector is essentially unique with respect to a 'cone'. We also

have comparison results for the eigenvalue problem above and the problem Lu =

AQ(t)u, u('-')(t,) = 0 for i = 1, 2,..., n. We close this chapter by giving examples

where the Green's function has the desired sign conditions. We also give results

for the difference equation analog on this problem.
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Introduction

We are concerned with the existence and comparison of eigenvalues for the

eigenvalue problem (-1)n'Lu = AP(t)u, Tu = 0, where Tu = 0 are appropriate

boundary conditions at points in the interval [a, b]. Here u(t) is an m-column

vector function, P(t) is a continuous m x m matrix function on [a, b] and Lu =

u(n) + p,(t)u(n- 1) + ... + pn(t). We will assume that the corresponding scalar

equation Ly = 0 is right disfocal on [a, b], that is, there does not exist a nontrivial

solution y of Ly = 0 and points a < t1 t2 < " < b so that y(i)(ti) = 0

for i = 1,2,...,n.

To get our existence and comparison results, we use several important thco-

rems from cone theory. Krasnosel'skir [12] discovered that if an operator A'! maps

a cone, P, back into itself, and there exists a nontrivial u in 7 and an e > 0

so that Mu > eu, where '>' means that if x > y then (x - y) E 'P, then there

exists an eigenvector in the cone. Moreover, if M is uo-positive, that is, for all

nontrivial x in P there exists scalars a, 0 > 0 so that au. < Mx < Ou., then

this eigenvector is essentially unique. We also use a result from Keener and Travis

[10]. Suppose operators M and N map our cone P back into itself, and one of

them is uo-positive. Further suppose that there exists nontrivial u, v in P and

scalars A, A so that Au < Mu and Nv < Av. Then if Mx < Nx for all x E P

0 then A < A.



In Chapter 2 we let k be a fixed element of {1, 2,..., n - 1}. We consider the

linear differential operator Lu = u(') +r(t)u, where r(t) is continuous on [a, b]. We

let ij, for 1 < j < n- k be integers such that 0 < ii < i2 < ... < i-k <n- 1.

Then our boundary conditions for this problem are given by u(')(a) = 0, i =

0, 1,...,k - 1 and u(ij)(b) = 0,j = 1,2,... ,n - k. Now Peterson and Riddenhour

[15] discovered sign conditions on the Green's function for the scalar analog of this

problem. Further, they give comparisons between the Green's function for this

operator with different boundary conditions. We take this eigenvalue problem and

consider its corresponding integral equation. By appropriately defining a Banach

space with a cone and using the sign conditions on the Green's function, we find

0 that our integral operator in a uo-positive operator. This allows us to apply the

results of Krasnosel'sky to get the existence of and uniqueness of an eigenvector

in the cone. Further, by using the comparison between different Green's functions

we can use Keener and Travis' results to give comparisons between the smallest

eigenvalues of different eigenvalue problems.

In our third chapter we examin the n-point right focal eigenvalue prob-

lem (-1)n-'Lu = AP(t)u, u('-1)(ti) = 0, i = 1,2,...,n, where Lu = u() +

pj(t)u("') + ... + p,(t). Assuming that Ly = 0 is right disfocal we give an ex-

plicit form for the Green's function. Under certain sign conditions on the Green's

function and conditions on P(t), we can show the existence of a smallest positive

0 cignevalue. And with firth br conditions on P(t), that its corresponding eigenvec-
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tor is essentially unique with repect to a 'cone'. We also have comparison results

for the eigenvalue problem above and the problem Lu = AQ(t)u, u(0-)(ti) = 0

for i = 1,2,. .. , n. We close this chapter by giving examples where the Green's

function has the desired sign conditions.

In our final chapter we show how the results from Chapter 3 can be obtained

for the n-th order linear vector difference equation Lu(t) = J=0 ai(t)u(t-k+i) =

0, t E [a+k, b+kJ. We assume that the coefficients ai(t) are defined on [a+k, b+kJ,

for i = 1,2,...,n, an(t) - 1, and (-1)na.(t) > 0 for all t E [a+k,b+k]. Here, the

matrix function P(t) and Q(t) are also defined on [a + k, b + k]. We assume that

Ly = 0 is right disfocal for this difference equation case and again are able to give

0an explicit form for this Green's function. By assuming certain sign conditions

o 6ile Green's faiiction wt; can, shcw that the results from Chapter 3 hold for

the difference eigenvalue problem. We also close this chapter by giving examples

where the Green's function has the desired sign conditions.

0
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Chapter 1

Cone Theory

I) Fundamental Definitions

We will start our exploration of cone theory with a fundamental definition.

A good treatment of cone theory can be found in Dcimling [2] or in Krasnosel'ski"

110]. Many of our definitions and theorems are from Krasnosel'skil.

Definition: Let 5 be a Banach space. A nonempty subset 7 of 3 is called a cone

if the following conditions are satisfied:

a) The set P is closed;

b) If u, v E 7, then au + fv E P for all scalars a, _> 0;

c) If u, -u (=- P L',cn u -= 0. the zero element of S.

-e note that from b), it follows that P is a convex set. A cone 7 is called solid

if it has a nonempty interior 7Po, that is, 7" - 0. A cone :P is called reproducing if

every element x E 6 can be written in the form x = u - v, u, v E P. The elements

u and v are not unique, for if x = u - v, u,v E P and w is any other nonzero

element of P, then x = (u + w) - (v + w).

The following lemma gives us a relationship between a solid cone and a re-

0producing cone.
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LEMMA 1.1. Let P be a solid cone in Banach space o, then P is a reproducing

cone.

PROOF: Let z be an arbitrary element of B. Let v E P°, the iiterior of P. Since

P is solid, that is, 'P has nonempty interior, we know that we can find such a v.

Now, since v is an interior point of P, we have that (v + ex) E P for sufficiently

small c > 0. Let u = v + ex and divide through by c to get that -u = -v + x. So

we have that x = u. - v., where u. = •u, and vo v, so uo,vo E P. Hence we

have that P is a reproducing cone.

As an example, we have:

Example 1.1: Let B = C[a, b), the set of continuous functions on the interval

[a, b], with norm 1l1xl = sUP[a,.] !x(t)I. Let P = C+[a, bi, the set of continuous

nonnegative functions on the interval [a, b]. It is easy to show that P is a cone

in S and has a nonempty interior P", equal to the set of continuous positive

functions on [a,b]. Then, from Lemma 1.1, we know that since P is solid, it is

also reproducing.

The converse of Lemma 1.1 is not true. Let 8 = Lp[a, b], the space of the

functions which are pth power, absolutely integrable on the interval [a, b], and P

be the set of nonnegative functions of B. Then P is a cone and although 'P is

reproducing, it has no interior points. It can be shown that in a finite dimensional

space, solid and reproducing are equivalent.

The space B is called partially ordered if, for certain elements x,y E B, the



relationship x < y is defined and the relation sign'<' posseses the properties:

i) If x < y, then ax < ay for all scalars a > 0, and ax > y if a < 0;

ii) If x < y and y < x then x = y;

iii) If x, - Yj and X2 -< Y2 then (xj + x2) _< (y, + Y2);

iv) Ifx <yandy<zthenx<z.

Our cone P induces a partial ordering on B if we write x < y to mean that

(y - x) E "P. To see this, we will show that this relation satisfies the properties

listed above. Property i) follows from property b) of a cone, for if x < y, then

(y - x) E 'P from which we have that a(y - x) E 'P for all a > 0. So a(y - x) =

(ay- ax) E 'P, or that ax < ay for all a > 0. If a < 0, then (-a)(y - x) E P or

(ax - ay) E 'P, so that ay < ax for all a < 0.

To show ii), we note that if x < y and y -< x then (y - x), (x - y) E 'P. But

(y - x) = -(x - y) so we have that -(x - y), (x - y) E ' which implies from

property c) of a cone, that (x - y) = 0 or x = y.

The last two properties follow from the fact that thc cone is closed under

addition. If x < yj and X2 -< Y2 then (yi - x1 ), (Y2 - X2) E '. So then (Y, -

xl) + (Y2 - x2) E P. But (y - XI) + (Y2 - X2) = (Yi +Y 2 )- (XI + X2) so we have

that (-I + X2) :_ (YI + !2). Finahy, ifx < y and y < z then (y - x),(z - y) E '.

So (y - x) + (z - y) = (z - x) E ', and x < z follows.

One further property of the '<' relation is invoked by the fact that the cone

is closed. Suppose that {x,} and {y, } arc sequcnces in 6 and that x,, - x and
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y, -- y as n -- oo. Suppose further that x,, < y, for n = 1,2,. .. ,then x < y. The

proof is simple. If x, < y,, for n = 1,2,..., then (yn - xn) E ' for n = 1,2.

Now (yn - xn) --* (y - x) as n --+ oo so we have that (y - x) is the limit point

of the sequence {y, - X,,}. Thus, since {y, - X,,} C 7' and ' is -losed (hence it

contains all of its limit points), we have that (y - x) E P or x < y.

II) Preliminary Lemmas

Consider the cone in 7Z2, 7 = {(r, 9)1r > 0, <" 9< 1 }, where the point

(r, 0) is given in polar coordinates. We notice that no line lies completely in the

cone. A line segment may lie in P or at best a ray will lie in the cone. This

geometric property also holds true for abstract cones, as the following lemmas

from Krasnosel'skil demonstrate.

LEMMA 1.2. Let U. E 7' and x E B. Suppose there exists an a. so that x < aou0 .

Then x < auo for all a > ao.

PROOF: Let a be greater than or equal to a.. Let / = (a - a.) >_ 0. Then since

(aoU-z),3 u° E P, we have that (auo-z) = (ao+fi)uo-x = (aouo-x)+3uo E P.

So we have that x < au..

LEMMA 1.3. Let u° E P\{0} and x E S. Suppose there exists an a. so that

X < a0uo. Then there exists a smallest al for which x < a1 u°.

PROOF: First, suppose there does not exist a lower bound on the set of all a's

for which z < au,. Then we can find a negative sequence {X,,} of this set, where
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in --+ -o an n -. c. Then for n = 1,2,..., we have that x < O3nU.. Now

1n1 > 0 for all n so we have that 'j x < ,.,u=-u.. Letting n --, o we find

that 0 < -u., which tells us that -u. E P which contradicts u. E P\{}. Thus

there exists a lower bound for this set. Let albe the greatest lower bound of this

set. Then a] uO - X is a limit point of our cone, and since our cone is closed we

have the desired result.

LEMMA 1.4. Let x,u, E B and -u. P. Suppose there exists an a. so that

acu. < x. Then there exists a maximum a, so that aLo < x.

PROOF: Suppose there does not exists an upper bound on the set of all a's such

that au, < x. Then we can find a positive sequence {fln} of this set, where

On --+ oo as n --+ oo. This gives us that for n = 1,2,.. , u. < -Lx. Letting

n -# co yields that u. < 0 or -u. E P which is a contradiction. Thus there exist.

an upper bound of this set. Let a, be the least upper bound of this set. Then we

have that x - alu. is a limit point of our cone, and since our cone is closed we

have that au. < X.

III) Linear Positive Operators

In this section we study linear operators which leave a cone invariant in

a Banach space. Under some general assumptions, these operators will have a

characteristic vector in the cone. Before getting on to these theorems, we will

need some additional definitions.

Let P be a cone in a Banach space 8. The operator M : B- B is called
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positive if M maps the cone back into itself, that is, M : ' -+ P. If u. is a nonzero

element of ', then we call the linear operator M uo-bounded below if for every

nonzero x E "P there is a natural number n and an a > 0 (which may depend

on x) such that au. < Mnx. {where MnX means the operator Al operating on

the element x, n-times.) An operator M is called uo.bounded above if for every

nonzero x E P there is a natural number n and a /3> 0 (which may depend on x)

such that M"z < flUo. If for every nonzero x E P there exists a natural number

n and a,,6 > 0 such that au. < Mx < fu., then we say that M is a u.-positive

operator.

A property of M being uo-bounded below is that if x E P\{0}, then MnX 0 0

for any n. For suppose that there existed an z E P\{0} and an integer k such

that ,I1 kx = 0. Let us suppose further that k is the smallest positive integer

for which this holds. Then M'-1x E P\{0} and since Al is ut-bounded below,

there exists an n and an a > 0 so that au. < jjn(Mk-x). But Al n(Mk-1X) =

Mn-l(' lkX) = M 'n-(0) = 0. Hence auo < 0 or -auo E P. Since a > 0 this

tells us that -u° E P which is a contradiction and our claim is proved.

In the above definitions, we have found a natural number n, and then operated

on x with A11, n times. In our study of differential equations, we will always take

this natural number n to be identically equal to 1. So, for example, we would

say that M, is uo-positive if for every nonzero x E P there exists a, , > 0 such

that au. < Mx < Pu.. We will, however, continue to keep these more general
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definitions a while longer.

If our cone 'P is solid and if for ever nonzero x E 'P we can find an n such that

M~x is in the interior of P, then we say that M is strongly positive. A strongly

positive operator is the simpliest example of a uo-positive operator. This is seen

in the following Lemma.

LEMMA 1.5. Let M be a strongly positive linear operator, relative to the solid

cone P. Then for any u. in the interior of'P, Mf is uo-positive.

PROOF: Let u. E P° and x an arbitrary, nonzero element of 'P. Then, since A' is

a strongly positive operator, there exists a natural number n such that Mnx E ' °.

Since MnX is an interior point of P, we have that (Mnx -aUo) E 'P for sufficiently

small a > 0, that is au. < MAx. Similarly, since u. is an interior point of P, we

have that (U. - LA1 nx) E 'P, for sufficiently large 83 > 0. So Mln < u., which

gives us that M"X < fluo. So for an arbitrary nonzero x in P, we have found an

a,#f > 0 and an n, so that o uo < Mn < /3uo.

IV) Characteristic Vectors

Let B be a Banach space and M an operator on B. We call a nonzero element

x E B an eigenvector or characteristic vector if there exists a scalar A, such that

Mx = Ax. The scalar A is called an eigenvalue or a characteristic value. We

sometimes call (A, x) an eigenpair for the operator M.

Suppose that M is a linear operator which leaves some cone P C 8 invariant,

0 that is, M is a positive operator with respect to P. If x is an eigenvector of M
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and x is an element of P, then we say that z is a positive eigenvector, and its

associated eigenvalue is called a positive eigenvalue. We are interested in these

positive eigenvectors and will employ Schauder's Theorem to prove their existence.

SCIIAUDER'S FIXED POINT THEOREM. Let M be a completely continuous oper-

ator which maps a closed convex bounded set IC, into itself. Tben M has a fixed

point x. E )C which satisfies the equation Mx = x.

Recall that an operator is called completely continuous if it is continuous and

maps bounded sets into sets whose closures are compact. We somctimes will refer

to a completely continuous operator as a compact operator.

The following Theorem from Krasnosel'ski [10], gives conditions for a linear,

completely continuous operator to possess a positive eigenvector.

THEOREM 1.6. Let B be a Banach space with cone P, and M a completely

continuous, positive linear operator. Suppose there exists an a > 0, a natural

number p, and a u E , -u P, u = v-w, v,w E 7, such that JVPu > au.

Then Af has a eigenvector x. E P and its associated eigenvalue A., satisfies the

inequality A. > /a_.

PROOF: Let K be the intersection of the closed unit ball with the cone, so K =

Pf n{x E B : JJxjj <1). We have that u = (v - w), v,w E P and-u P. So we

know that v 3 0. We then define the operators M, on K by

IiIM(X + 1)',



* 12

Then, for each n, M is completely continuous since the operator Ml is completely

continuous. We also have that, for each n, M, : K - K. This is easily seen, for

if x is an arbitrary element of K, then (x + -) E P and since l is a positive

operator, M(X+ -) E P so that Al X E P. Also, by (1) it is clear that 11M.[x _< 1,

so we have that Mnx E K. Since x was arbitrary we have that M. : K .- K.

Now K is a closed bounded convex set. {We know that K is convex since

both P and the unit ball are convex and the intersection of two convex sets is a

convex set.) By applying Schauder's Theorem we have that every operator .M,'

has a fixed point x, in K. So we have that M,,X = x,, or from (1) we have that

(2) M(Xn +v)=,,x,,, A,,= II(xn + V)I, n=1,2.
ni n

Now Al is a compact operator and the set {X + I I n = 1, 2,... } is bounded

by 1 + IIvjI, since II:, + 111 < IIXnII + "a',  < 1 + l[vII. Thus there exists a

subsequence of the sequence {M(x,, + )} which converges. That is, there exists

a sequence of ni's, so that the sequence from (2), {A,,,x,,, } converges. Now, since

the sequence {M(x, + I-)) converges, this gives us that An = [IM(xn, + '-)II,

converges to, say, A. > 0.

We will now show that A. > 0 and, in fact that A. > /a-. From (2) we have

that M(X, + ') = Anxn. Thus Anx, _> MX,, since il is linear and (A,,:, -

MX,) = -Allv E P. This gives us that x,, > .-LMx. Now since M is a positive

linear operator we have that x,, > -Mn > -LM[-_M1X,]= -L 4M/ 2  . So,

after p- 1 iterations we get that n > !'1P-I1,,, so from (2) we have x,, >
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AIP(xn + n

Now AIP(xn + _) AP(") - jllPV, since (zx + M) > -. Also we have that

MPv > M'u since v > u = v - w, and MPu > au by hypothesis. This gives us

that

Xn >_ 1 MP(X +v)
Zn> +

n M n

--- U, for n = 1, 2,.

By Lemma 1.4 there exits a sequence of maximum n's so that

(3) Xn > O.u, n = 1,2 ....

This and the fact that v > u yields

(4) X >_ 1 JIIP(x +
n

1 1= (On + -)MAIu
1

_ (On+ 1)u, n =1,2,...

Now, by the maximality of each B, we combine (3) and (4) to get that

T~n (#

or AP>c+- , n=1,2, ....n - Oi
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Now An; - Ao as i --+ oo, hence from the last inequality we get that A, > a > 0

or our desired inequality, Ao > (/'.

Since we have that the sequence {A,,,x,, } converges, and A,, converges to

A. > e/a > 0, we have that the sequence {A,,x } converges to Axo for some Xo.

Hence, we have that {(A., x.,)/Ao} converges to x. as i --+ o. Now from (2) we

have that I(A,x,,)/A°.t = (-+.)Jjx., = jj -- 1 as i . co. Thus Ilxo[[ = 1 and

so X0 € 0.

Since each (x,,, + -) E P and P is closed, we have that x. E P. Also, since

M is continuous, we have that M(xn, + -) converges to Mx.. But M(x,,, + -) -

A,1 njX which converges to Ao. Thus Mxo = A0o 0 . That is, x. is an eigenvector

of the operator M with eigenvalue A0, and further, x. E P. Hence our theorem is

proved.

An eigenvalue, A0, of an operator Al is sometimes called simple if all the

solutions of the equation

(M AoI)"x = 0, n = 1, 2 ,

are also solutions of (11 - AoI)z = 0, where this set of solutions is one dimen-

sional. Krasnosel'skiy has an important result which gives conditions under which

our positive eigenvalue is simple and its corresponding eigenvector is essentially

unique. To prove this theorem, we will first need the following lemma.

LEMMA 1.7. Let x. be a positive eigenvector of the u.-positive operator M. Then

0M is an x°-positive operator.

N
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PROOF: Since x. E P and M is u.-positive, there exists as a.,f. > 0 and a

natural number p so that

aOu 0 < MPX0 < P.u 0.

Now if A. is the corresponding eigenvalue of x., then since A'l is u.-positive,

we know that A. > 0. Further we have that MPx. = Px,, and so

(5) **z <u. and u. <- z..

So if x is an arbitary element of 7\{01, then there exists an a, / > 0 and a natural

number n so that

au0 < MnX < 3u..

But by the inequalities (5) we have

aIX0  5.Aln. < Pl.,

where a, = aAP/fl0 and 01 = PAPA/a.. Thus M is x.-positive.

With this lemma proved, we move onto our important theorem.

THEOREM 1.8. Let P be a reproducing cone in our Banach Space 5, and M a

completely continuous, u.-positive linear operator on B. Then the operator A1

has an essentially unique, (unique to within the norm), eigenvector in 7?, and its

associated eigenvalue is simple.

PROOF: Since 1! is u.-positive, and u0 E 7, there exists a,B > 0 such that

0Clu. < MPu. < Pu., for some natural number p. Now ? is a reproducing cone,

/I
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so Uo = (v - w), v,w E 'P and -u. P. Thus, by Theorem 1.6, Al has an

eigenvector x., in P with associated eigenvalue A., and since Al is uo-positive, we

know that A. > 0.

We will first show that A. is simple, and then show that there is no other

eigenvalue with corresponding eigenvector in P. First suppose that there exists a

y., noncolinear to x., so that My. = A.y.. We can assume that -y. P, for if it

were, we can take z. = -yo, so -zo P 7) and Mzo = Aoz. Since 'P is reproducing,

there exists YI,Y2 E 'P so that yo = yI - Y2 with yi 0 0 since -y. P. We note

that yo <_ yj since (y, - yo) = Y2 E 'P.

Now from Lemma 1.7 we have that Al is x.-positive. Hence there exists a

/3> 0 and a p so that MPyj :5 Ox.. This gives us that A.y. = MPy. Ml'y, <

#x0 . Thus we have that (x. - =-y.) E 'P. Then, by Lemma 1.4, there exists a

maximal P. so that (xo - fl°yo) E P, which gives us that 0. >_ - > 0.

We have that (x. - floy.) E P, and Al is x.-positive, thus there exists an

a > 0, and an n such that ax. < M(x. -Poy.). Now oy° X, SO a.oy° QX..

But this give that ac3 y. :5 ax. < In(. - 8oyo), or that a/o.y. < (-alXo -

8.My.) = \"X. - 8o"Ayo. Thus -4 -yo !5 xo - f.y.. But this gives us that

(Xo - flo(1 + -- yo) E 'P which contradicts the maximality of f3°. Thus the only

solutions to (Al - AoI)x = 0 are scalar multiples of xo.

Next we suppose that there exists a n. and a z., noncolinear to z., such that

(M-AoI)nZo = 0, and (M-AoI)"'--. #0 . Let zi = (M-AoI)" 'zo, so that
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(M - AoI)zl = 0. From what we have shown earlier we have that z, = kx,, k # 0.

This gives us that I(M- AoI)n.-Izo = X0 . Now let Z2 = -L(I- AoI)n.-2-o,

so that (M - AoI)Z2 = -x, or Mz 2 = AoZ 2 - Xo. Now Al is linear so

M 2- = JIi(A-z 2 - x.)

= A.Mz 2 - MX

= A.(A.Z 2 -x.) - ,.x,

=A2z2 - 2Azx.

By induction we have that

(6) Mn = An Z2 - nA,."-IX.

Now z2  , for if it were, then Mnz2 E P. Then from (6), after we divide

through by (nA)- 1 ), we get that (? Jz 2 - x.) E P. But our cone is closed and

-x, is a limit point of (--z2 - X.), so we would have that -x. E P. But x. is

an eigenvector of P, so x. 3 0 and this contradicts item c) in our definition of a

cone.

Our cone P is reproducing so Z2 = (v - w), v, w E 7, and w : 0 since z2  .

Now -w < Z2 since (Z2 + w) v E ?. Since w E P\{O) and Al is x.-positive,

there exists a P > 0 and a p such that MPw < Ox.. This gives us that

-oz. < AP(-w)

< M'z2 = APz2 - pAP-'x. from (6)

or Z2 A P 0
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where (pAO' 1 - < 0 since z2 V P. Then -z 2 < x MultiplyingA'

through by the positive quantity we get that (. + )z,) E P.

So by Lemma 1.4, there exists a maximal /3. > 0, so that (x, +,3.z 2 ) E 7. This

gives us that M(X. + Ooz2) E 7'. But

M(z. + /3z 2 ) = MX. + /3.Az 2

= AXo 0 + 3.(,\o- 2 - X.)

= (A0 - fl.)X. + fl0 AZ 2.

Now (A. - 3.) > 0 for if (A. - fl.) < 0, then ([-(A0 - fi.)]:.) E P and since

((A. - /3.o). + /3.Az 2 ) E P then their sum is in P, that is (001\-z 2 ) E 7, which

contradicts z2  7'. Thus (x. + a Z2) E 7. But 6*,\* >13c. This contradicts

the ma-ximality of flo.

Thus the solutions of the equation

(Al - AoI)'x = 0, n = 1, 2,

cannot be different from the solutions to

(M - A.I): = 0.

Hence we have that A. is a simple positive eigenvalue.

We now prove the second half of our theorem, that the cigenvectors of Al in

P are essentially unique. Let us assume that there exists two linearly independent
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eigenvectors X1,X2 E P such that Ml -- Alz 1 and M: 2 = A2: 2 and that ljz: l =

lIX211 = 1. Then by the first half of our theorem, A1 - A2 , so we can assume that

A1 > A2. Since M is u,-positive, we know that A2 > 0.

Now by Lemma 1.7, Al is xI-positive, so there exists an a > 0 and a p so that

MPX2 = A2PX 2 aX. This gives us that (AP: 2 - axi) E P and since AP > 0 we

have that (X2 - -xi) E P. So, by Lemma 1.4, there exists a maximal 0. so that

(X2 - ,Oxi) E P. Thus AI(X2 - fobl) is an element of P. But M(: 2 - f3XI) =

M: 2 - floMxl = A2X 2 - /o 0AII.. Hence we have that (X2 - oXLx:i) E P. So by

the maximality of fo we must have that A-L < 1, or A1 <5 A2.But this contradictsA2

our assumption that A1 > A2. Hence the eigenvector of M in P is essentially

unique, and the proof of our theorem is complete.

The next two theorems, both from Krasnosel'skiri, we state without proof.

THEOREM 1.9. Let P be a reproducing cone in Banach space B, and Al a com-

pletely continuous, uo-positive linear operator on S. Thcn the eigcnvalue corre-

sponding to the essentially unique positive eigenvectcr in P, is greater that thc

absolute magnitudes of the remaining eigenvalues.

THEOREM 1.10. Let x. be a positive eigenvector, with corrcsponding eigen value

A0, of the completely continuous Xo-bounded above linear operator Mf. If the

cone P is reproducing, then the remaining eigenvalues of the operator M are, in

modulus, not greater than Ao.
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As mentioned before, in the study of differential equations, one often takes

the definition of a uo-positive operator to be slightly different. For our purposes

we will call an operator M uo-positive if for every x E P'\{0}, there exists an

a, fl > 0 so that au. < l < fOuo. From this point on, this will be the definition

we will be using.

For the final theorem in this chapter, we will be needing one more definition.

If M and N are two linear operators which map 8 back into itself, then we say

that M < N (with respect to P), if Mu < Nu for all u E P.

This last result was discovered by Keener and Travis [S,9,15]. It gives com-

parison results between two eigenvalues of two different operators.

TH EOREM 1.11. Let P be a cone in the Banach space B. Let ill, N : S - be

bounded, linear operators, one of which is uo-positive. If M! < N and tcrc exists

nontrivial ui, u2 E P and A1 , \ 2 > 0 such that

A'U1  MUl and Nu2 !_ A2 u 2,

thcn A, :_ A,. Moreover, if A1 = A2 then ul is a scalar multiple of U2.

PROOF: We will first assume that AT is a Uo-positive operator. Then, since ui E

P\{0), there exists a 01 > 0 so that Mul < Oluo. But Alul _< Mu1 , so we have

that Alul < #1u. or -u l  0 Uo.

Now u 2 E P\{0} so there exists an a 2 > 0 so that a 2Uo < Mu 2 . But M < N,

so a 2 Uo 5 Au 2 :_ Nu 2 . This gives us that a2( -)u1 _ 0 2Uo _< Nu2  A2 U2. So

' A ' -<5 A2U2. Thus (u 2 - 3ui) E P, where/f=5 ' > 0.
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By Lemma 1.4, there exists a maximal /30 so that (u2 - ,oUi) E P. Now

M(u 2 - O-ol) MU 2 - -A(#30U1 )

_ Nu2 - fl.0Aul

S_ ,u2 - f3,A 1u 1 .

Thus (u 2 - 3o(.)uj) E P. So by the maximality of 3 we must have that L < 1
A2 2

or A < A2.

Finally, suppose that A1 = A2 A: A. From above we have that (u 2 -130u 1 ) E P,

where 3 is the maximal scalar given to us by Lemma 1.4. If (u2 - 3 oUl) = 0,

then we are done. If not, then there exists an a > 0 so that auo < M(u 2 - 3oUl).

0Now from above, we have that x-ul < u. so that

A
cr-u 1 :5 au.

_M(u - f3lUl)

- Mu 2 - 3.Mul

<Nu2 - 3Mu1

<Au 2 - P3.Aul

Thus (u 2 -3Ul -a-U,) = (u2 -(fo + f-)ui) E P. But > 0 contradicts the

maximality of 3. Thus we must have that u2 = 3U,.

When we started we assumed that M was the uo-positive operator. If N is the

uo-positive operator, then the proof is very similar, and so will not be repeated.
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Chapter 2

Comparison Theorems for a Right Disfocal

Eigenvalue Problem

I) INTRODUCTION:

Let n > 1, m > 1, k a fixed element of {1,2,...,n - 1} and I = [a,b]. We

define the linear differential operator L, by Lu = U( n ) + r(t)u, where u(t) is an

m-column vector function, and r(t) is a continuous function on [a, b]. Also let

P(t) = (pij(t)), Q(t) = (qij(t)) be continuous m x m matrix functions on [a, b]

and let ij, for 1 < j < n-k be integers such that 0 < i1 < 22 <... < Zn-k < n-.

We consider the two point right focal eigenvalue problem:

(1) (-1)'-Lu = \P(t)u

Tu = 0,

where Tu = 0 denotes the boundary conditions:

u(i)(a) =0, i=0, , k-I

u("')(b)=0, j=1,2,...,n-k.

If G(t, s) is the Green's function for the scalar boundary value problem,

(2) (-1)n- 1 Ly =0

Ty=0,
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where Ly and Ty are as above, but defined appropriately for the scalar case,

then under certain sign conditions on the G(t, s) and conditions on P(t), we call

show the existence of a smallest positive eigenvalue. And with further conditions

on P(t), that its corresponding eigenvector is essentially unique with repect to a

'cone'. We also have comparison results for the eigenvalue problems (1) and (3),

(3) (-1)"n-1Lu = AQ(t)u

Su = 0,

where Su = 0 are boundary conditions similar to those above.

Our results are new, even in the scalar case. Our technique will be to use

the theory of uo-positive operators with respect to a cone in a Banach space.

We then will use sign conditions on a Green's function and then appropriately

define an integral operator which will map a cone back into itself. The theory of

operators acting on a cone, can be found in books by Krasnosel'skii [12], Deimling

[2], and Guo and Lakshmikantham [5]. Related papers include those of Eloe and

Henderson [3], Gentry and Travis [4], Hankerson and Peterson [6,7], Krein and

Rutman [13], Keener and Travis [10,11], Kreith [14], Schmitt and Smith [16],

Tomastik [17,18], and Travis [19].

II) THE GREEN'S FUNCTION:

In this section we give sufficient conditions for the existence and give an

explicit form for the Green's function for our problem (2). Also, we will give
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certain sign conditions of the Green's function. Some of these sign conditions are

new. Theorems 2.1 and 2.2 and Lemmas 2.3, 2.4 and 2.5 are a result of work by

Peterson and Riddenhour [15]. We present their work without proof.

We will need the following definition.

Definition: The differential equation Ly = 0 is called right disfocal on an interval

I if there does not exist a nontrivial solution y of Ly = 0 and points tj < t2 <

• -_<tn E I such that y('-1) (t j) = 0 for i = 1, 2.... , n.

We will also need to introduce some notation. For each fixed s in the inter-

val [a,b], let {yo(t,s),y(t,s),... ,y_-I(t,s)I be the set of (linearly independent)

solutions of Ly = 0, satisfying the intial conditions:

YkJ)(t,s),=, = bjk, 0 < j,k < n - 1,

where bjk is the Kronecker-delta function

,ik = 0'O forj k
1, for j= k.

T11EOREM 2.1. Let Ly = 0 be right disfocal on [a, b]. Then, for each fixed s E

[a, b], the Green s function for (2) exists and is given by, for a < t < s,

0 yk(t, a) ... y._I(t,a)
n~-lk )(bs) )(b,• . yn -I(b, a)

G(t,s) = D

,,_--*(b,s) y'-)(b,a) ... y_2- '(b, a)

If s < t < b, then we replace the zero in the first row, first column by y.-I(t,s)

with everything else remaining the same.
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In the above formula, D is given by:

t W y (b, a) .,i) ( , J ... , ) i s)
i k+ I • • Y--1

S02)(b,a) y02) (b,a) ... y02)
D kk+ 1 n- 1~a

0. , -:) (b a) y(i"-)(b,a) .. (i - ) (b, a)

Yk k u  k+I - I-

To present the next theorem, we need to consider the following partition of

n-tuples. We will say that (il, i2, , in ) < j2, -. < ) if there exists an integer

m such that

i) ik = jk for k = 1, 2...,IM --

O ii) Zi < i

iii) ik < jk for k = mn+ 1,rn+ 2,...,n.

We can now give a comparison theorem and sign conditions on the Green's

functions from different boundary value problems.

TIHEOREMi 2.2. Let Ly = 0 be right disfocal on [a, b], and suppose that

(il 1i21,...,ii,-k) < (jliji,...,jn-k) where 0 < j, < j2 < ... < j,,-k < n - .If

Gi,...i._,(t,s) is the Green's function for

Ly=0

y(i)(a) =O = O, 1..., -1

y 0j) (b)=O0, 1~,2,..n -k,
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and G,...J,k(t, s) is the Green's function for

Ly=O

y(i)(a) =0, i=O, 1 .... ,k- 1

y(ji) (b)=O, 1 1, 2,. .. , n- k,

then G ('. (t, s) < G ts) on (a, b)2 for p = 0,1, ii.

We note that the above theorem gives us a sign condition on G(t, s). Since it is

well known that Go ....- k-1(t,s) > 0 on (a, b)2 we have that if (i, 22 . , in-k) >

(0,1,... ,n - k), then Gi,...inI(t' > 0 on (a,b)2 .

The above two theorems are proved using the following lemmas.

LEMMA 2.3. Let L* be the adjoint operator defined by L'z = z(n) + (-1)nr(t)z,

corresponding to our operator Ly = y(n) + r(t)y. Then Ly = 0 is right disfocal if

and only if L*z = 0 is right disfocal.

Our next lemma gives a relation between our set of solutions to Ly = 0 and

a set of solutions to L*z = 0.

LEMMA 2.4. For i = 0.1,..., n - 1, let zi(t, s) be solutions on [a, b], to

L'z=O

Ts)enfr0 =iji, 0 __. J e< n -

Then, for 0 < Zi, j* < n - 1, we have

"Y- -- J "n-j-] (S)
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for all t, s E [a, b).

This lemma is proved by applying the Lagrange identity to yi(t, r) and

zn._j.I(t,s) and evaluating at t = s and t =7r.

By using the adjoint realtions of Lemma 2.4, it is easy to show that for any

fixed t,

(4) (){" 't (t S)

on [a,b] x [a,b for 0: i, < n-1, 0< r <j.

The next lemma is a crux to all of our results.

LEMMA 2.5. If Ly = 0 is right disfocal, and y is a nontrivial solution to (2), then

y(t) # 0 for ali t E (a,b).

This last lemma is proved by assuming that there exists a t. E (a, b) and a

nontrivial solution y, to Ly = 0, such that y(to) = 0. Then using the bound-

ary conditions with a Rolle's Theorem argument, one can contradict Ly = 0 is

right disfocal. It is important to note that this lemma also holds for the adjoint

equation.

We can now give a sign condition on certain derivatives of the Green's function

at the end points. To establish the sign condition at t = b, we need a bit more

notation. Consider our boundary conditions at t = b. Suppose that ii > 0, then

we define k. = 0. If ii = 0, then we define ko, 1 < ko < n - k to be such that
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ij =j- 1, for j = 1,2,... ,ko- land k. < ik.+1 (if k. < n-k). So, for example,

if we have the (n - k)-tuple (i 1 ,i2,...,in-k) = (0,1,2,5,..., i,_k), then k. = 3.

THEOREM 2.6. Let Ly = 0 be right disfocal and G(t, s) be the Green's function

for (2). Then G (k)(a, s) > 0 for all s E (a, b). Further, we define ko as above, then

(-1)kG(k.)(b,s) > 0 for al s E (a,b).

PROOF: We will first show that G(k) (a, s) > 0, for all s E (a, b). After taking k

derivatives and evaluating at t = a, we have that the first row R 1, of G(k) (a, s) is

ril= (0, yk)(a, a), yk+ I (a, a),... , tin,- I.(a, a)) = (0, 1,0,.. . ,0). Now, define f(s)

on an open interval which contains [a, b] by

f1s (bS) 61) (b,a) y(..)YnIYk+I --1~a

f (:n ) (bs) (-ki)(b,a) ... (b,a)

Yn-1 k+l Yn-1

So we have that G(k) (a,s) = ()-k+l f(s) on [a,b]. Now, we can show that

f(s) 34 0 for all s E (a, b). We first transform f into its equivalent adjoint form

using Lemma 2.4. Then f satisfies L*z = 0 and the equivalent adjoint boundary

conditions. So from the adjoint form of Lemma 2.5, we have that f(s) 0 0 for all

s E (a, b).

Now, consider any element in the first column of f. By using (4), we have

that (oLjf,,{ U)tl .(
t at ( ,-, (b,s)}1.=b = (-1)3Y,.,j(b,b) = 0, for 0 < j < (n -1)-

and i E {iI,i2,. .. ,ik}. (If i- = n - 1 then we define j = 0.) This tells us

that f(j)(b) =0 for 0 j < (n-1)- ik. Now, letting j =n -1- i._k, we
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have that

(01) ( ) .( )(01)

o1 y~(b,) ... (b, ) .. (b I(ba)

o l b(12) 02)

y , ( b , b ) 
( b , a )

(i k) : b _ y ; )(b,a) .. . .(i ). (ba )

Yi._tk k+l [ n-1 ,

0 Yk (b, a) a) Y -I (b, a)

geYk+1fI(b) . . Yn-I, s )(i ) .(i )

yk+1 (b, a) .. n 1 (b,a)

(~)n~l~) (lYlk+fi(b( Ib) k ± n(x - 1+)

(if) (a a) ( , I) ( ) .0 f (a 2) (b , )
n-+ k1k+2(ba n-1

(in)b a) a (in- eie) .cs f a ml ( n)ougYk 1 I k+2 I, .. n'-1 b
SIt is a standard argument to show that the above determinant is positive. This

giweshave that (1)-)n-k+lf(j)(b) > 0. Now, since f()(b) = 0, for 0 < r< j,

we can use a Taylor series expansion on (-1) n-k+lf(s), about b, to get that

(1)"n-k+lf(S =_lk f() ()( ) 0( x+)
~~~~~j!) +O(-bil.

This tells us that for a sufficiently small 6 > 0, if-,j is even, then (-I )n-k+lf(S) > 0

for all s E (b - 6, b). If j is odd, then (-1)",-k+lf(s) < 0 for all s E (b - 6, b), or

(-)/(-)-k+ f (s)) > 0 for all s E (b-6b, b). In either case, for a small enough

b, we have that (-1),,-k+lf(s) > 0 for all s E (b - 6, b). But, we have already

shown that f is of one sign on (a, b). Thus (-1)n-k+lf(s) > 0 for all s E (a, b).

This gives us that G(k) (a,s) = -D f(s) > 0 for all s E (a, b), and so the

first part of our theorem is proved.
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To prove our sign condition at t = b, we suppose that iI = 0 and k. is defined

as before. We define the function f on an open interval containing [a, b] by

y(k.), (k y '() -(k.), b
(- I (b, S) yk")(b,a) ... - '.L(b,a)

(-l) -k 0 .- (b, s) •~' (ba)01
f (S ) = 

k • • a )

("-') b ) y("--)(b,a) -y --k) (b,a)
n-1 ko " n-1 ,

By defining f in this manner, we have that G (k.)(b, s) = ftL f(s) for s E [a, b].

Like before, we show that f(s) # 0 for all s E (a, b) by first transforming f into

its equivalent adjoint form using Lemma 4. Then f satisfies L*z = 0 and the

equivalent adjoint boundary conditions. So from the adjoint form of Lemma 5,

we must have that f(s) 4 0 for all s E (a, b).

Consider any element in the first column of f. By using (4), we have that

(T(_ = (-1)y -j.,(b,b) = 0,

for 0 <j < (n - 1)- i-,k and i E {i 1,i 2 ,... ,i ,.-k}. (If ik = n - 1 then we

definej =0.) This tells us that f(j)(b) =0 for 0 < (n-1)-i,-k. Now,
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letting j = (n - 1) - i.-k, we have that

f(). (b,b) " h)(b,a) . yk')(b,a)Yi.-k (b ) k * b ) .. Yn-1

0(") (bb) y"')b(ba) 0 )
f (j)(b )  = ( 1 )j  Yi . n -b

I" -k)(b, b) ' v -)(b, a) ... - (, a

k .. ,jk)(b a)Y-(b, a)

0 ko)(b, a) ... Yy-I a

n1 '-')(b,,a) y_(i-- )(b,a) .Y( k .(b, a) • (k.) Y(k. (b, a)
k k+l " n-1

0 ) 
Ih

= a) i', (b, a) . ( )b, a)

zei))(b,a) >.n s, f ((, a)
for 0 0j a sn1)

Uy "')(b -a-)' Y ,,)ba
vk k+1, (b )(ba
( ' ')(b, a) _( ) [ '2 ) U2 ) ,a

Yk -Yk+l (b, a) ... Yn-1(,a

k A:)ba y A: (b"a .. y( :)ba

1)k.1)Y(- )k-*( -n- 1
(k.) ( k

(kh°+ (,a) ... ( °+)(b, a)v(P+'(b, a) y,+ • v-I
Y(" + (b") y k0 )(,a .. Yi : +
y(P 'k(,, n--)' a (-)b, a)
Ykk+l I ' Yn-1

Now, from our construction of k, we have that ik° < k. < ik°, so again from

a standard argument we have that the above determinant is strictly greater that

zero. This gives us that (-j)j(-1)"-k(-1)k'fOj)(b) > 0. Now, since ffi)(b) = 0,

~~~~~for 0 <5 1 < j, we can again use a Taylor series expansion on (-)-(-)'~)
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about b, to get

(xbi
(-1) nk(_1)kf(s) = (- )nk(_l)kf()(b) j! + 0((x - )).

From this we can again see that for 6 > 0 sufficiently small, that if j is even,

then (-1)n-k(-1)k.f(s) > 0. If j is odd, then (-1)n-k(--1)k'f(S) < 0 for all

s E (b-5, b), and so (-l)i{(-l)"-k(-l)k.f(S)} > 0. In either case we have that

(-1)n-k(-1)k.f(s) > 0 for all s E (b - , b) for small enough b. But, we have

already shown that f is of one sign on (a, b). Thus (-1)n-k(-1)ko f(s) > 0 for all

S E (a, b). This gives us that (-1)k- G(k°) (b, s) = -1 'DL-.(--)k. f(S) > 0 for all

s E (a, b), and so our theorem is proved.

IV) EXISTENCE AND COMPARISON RESULTS:

We will now introduce a suitable Banach space for our eigenvalue problem

(1). Recall that the boundary conditions Tu = 0, for u an m-column vector, are

u(')(a) = 0, for i = 0, 1,...,k - 1, and u(i )(b) = 0, for j - 1,2,... ,n - k, where

0 o il < i2 < ... < i-k < n - 1. First, let us suppose that ij 3 0. When 21 : 0,

we will denote these boundary conditions as T u = 0.

We now introduce the Banach space

Si ( u E C "(a, b], 7Z') I u(i)(a) = 0, i = 0,1,....,k - 1}

with norm IulI = maxO<,<{max[a,b] 10)(t)} where I" I is the Euclidean norm.

Following ideas from Hankerson and Peterson [5, 6], and Tomastik's paper [13],
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welet I,J C {1,2,...,m} be such that IUJ = {1,2,...,m} andIfnJ =. (It is

permissible for I = 0 or J = 0.) Let 9 be the 'quadrant' cone in RJm defined by

= {x = (xl,...,x.,)Ixi ! 0 ifi E I, xi < 0 ifi E J}.

Although some of our results will hold for any solid cone in Rl", we will just

concern ourselves with kA being a 'quadrant' cone in Rm. Define 8i to be the

discrete function 6i = 1 if i E I, and bi = -1 if i E J. We can then equivalently

define the cone kA to be kA = {x E R7 I i x i 0 for i = 1,2,...,m}. This

also allows us to define the interior of A as V°  {x E IJ 6bixi > 0 for i =

1,2,... ,m}.

We now define the reproducing coneT P C B 1 byP 1 = {u E B1 Iu(t) E k, t E

[a, b]). This gives us the following Lemma concerning the interior of our cone P1.

LEMMA 2.7. Let the cone P1 in the Banach space B1 be defined as above. Then

the interior of P1 is given by

= u E Si Iu(t) E kC, t E (a,b] and u(k)(a) E k1

or equivalently

P,* = {u E B1 tbiui(t) > 0, t E (a,b] and 6iut)(a) > 0, i = 1,2...,M}.

PROOF: Let Q = {u E B Iu(t) E Co, t E (a, b] and u(')(a) E A:0}. First we will

show that Q C PO. Let u be an arbitrary element of Q, so we want to find an I- > 0
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so that the ball B(u; c) C P1. For a vector function x(t) on [a, f3] C [a, b] we define

the distance function d[a,,](x(t), K) to be the distance between the function x(t)

on [a,80] and the boundary of the cone OK. Let EI = 1-dla,b](u(')(a),OK:), so we

have that cl > 0 since u(k)(a) E C". Now u( ' ) is a continuous function, so there

exists a 6 > 0 so that u(k)(t) E B(u(k)(a); eI) C lR-, for all t E [a, a + 6]. We note

that this gives us that d[a,a+ 6 1(U(k)(t), 4K) > _I.

Thus we have that u(t) E K)° for all t E [a + bb]. Then, if we now let

C2 = d[a+6,b](U(t), OK) we also have that C2 > 0 since the graph of u(t), which is

compact on [a + 6, b], and OK do not intersect. We note that in this case, we have

that d[a+6,b]((t), 1K) >6 2.

Let c = min{e,C 2} > 0. Then we have that B(u;e) C P1. To show this, we

let z E B(u;e). Then IIz-ull < e so in particular we have that Iz(k)(a)-u(k)(a)l <

E, = d[a,b](U(k)(a),MK). This tells us that z(k)(a) E A ° . Now I1z - ull < c also

tells us that !z(k)(t) _ u(k)(t)! < - for all t E [a,a + 6). This gives us that

z(k)(t) E K* for all t E [a,a + 6]. If this were not so, then since z(k)(a) E K° and

z(k) is continuous, there would exists a t. E [a,a + b] so that z(k)(t.) E OK:. But

from the note above we know that da,a+6](u(k)(t),OK) > C. This gives us

that Jz(k)(to) - u(k)(t.)l > c which is a contradiction. Thus z(k)(t) E K for all

t E [a,+6].

Now, this last statement tells us that for i = 1, 2,..., m, bi z)(t) > 0 for all

t E [a,a + b]. Thus bi_ k1)(t) is a strictly increasing function on [a,a + 6] with
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6,zi l)(a) = 0 for each i. Hence we have that 6Iz~k)(t) > 0 for all t E (a, a +],

for i = 1, 2,. .,m. Thus bizk-2)(t) is strictly increasing on (a, a + 6], with

6,zi 2)(a) = 0 for each i. Thus 6iz~k 2)(t) > 0 on (a,a + 6] for each i. Hence, for

each i = 1,2,..., m, we have that 6izk 3)(t) is strictly increasing on (a, a+6] with

61zk- 3)(a) = 0. Continuing in this manner, we eventually come to the conclusion

that z(t) E C for t E [a,a + 6].

Also, we have that iz(t)-u(t)I < C _< 62 for all t E [a+6, b]. Thus, z(t) LC or

else we contradict e2 < d[a+6,b](U(t), OC). Since z(a + 6) E KV and z is continuous,

we must have that z(t) E C° for all t E [a + 6, b]

Thus z(t) E k for all t E [a,b]. But this means that z E 71, and since z

was an arbitrary element of B(u; c), we have that B(u; -) C TP. But u was an

arbitrary element of Q and we found an c > 0 so that B(u; c) C P 1. Thus we

have that Q C Pj".

We now show that PO C Q. Let u be an arbitrary element of P0. Suppose

there exists a to E (a, b] so that u(to) E Ok. This give us that there exists a

component of u, say ui,, so that ui,(to) = 6. Considering the scalar equation,

6,.ui.(t) > 0, it can be seen that for any c > 0, since bi1 ui.(t°) = 0, we can

find a function bi. zi. (t) E B(6i. ui.; ,) so that 6i. zi. (t°) < 0. If we let the vector

function z(t) equal u(t) in each component except in the i° slot, and then in that

slot let (z(t))i. = zi. (t), then z E B(u; -). But z(t.) C since 6i. zi. (t°) < 0.

Thus z P 1 . Now z was based one > 0. Thus, for any c > 0 we can find a
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z E B(u; e) and z P. This contradicts u E Pl'. Thus u(t) E A° for all t E (a, b].

Now suppose u(k)(a) k°. So there exists an i so that 6iulk)(a) <0 0. Then

for any e > 0 we can find a z E B(u; e) so that z k)(a) < 0. Thus S,- k) is

strictly decreasing at a. We have that zlk-i)(a) = 0 so we can find a 6 > 0 so

that 6iz k-1)(t) < 0 for any t E (a, a + 6]. Thus, b,z(k2) is strictly decreasing on

(a, a + 6] and 6iz(k-2 )(a) = 0. Hence 6,z(k-2)(t) < 0 for all t E (a, a + 6]. Like

before, by continuing in this manner we come to the conclusion that z(to) 0 kC

and so z P1, which contradicts u E P*. Thus we must have that u(k)(a) E kC° .

So if u E PO we have that u(t) E C° for all t E (a, bi, and also that u(k)(a) E

,Co. Thus u E Q, and since u was an arbitrary element of ?', we have that

P C Q. Thus our lemma is proved.

Now let us suppose that il = 0. We will denote these boundary conditions

as Tou = 0. As in the last section, let ko, 1 < k. < n - k, be such that ij = j - 1

for j = 1,2, k - 1 and ik.-1 < ko < i,. (if ko < n - k).

We now introduce the Banach space

o= {u E C"([a,b],lRm) lu() (a)= 0, ,0 < i < k-1, u()(b) = 0, 0 < i < ko-1},

with norm Ijull = maxo<i<n{max[.,b] Iut ')(t)l) where I" I is the Euclidean norm.

We now define the reproducing cone P C Bo by P = {u E Bo I u(t) E K, t E

[a, b]}. We also have a lemma concerning the interior of this cone Po.

LEMMA 2.8. Let the cone Po in the Banach space Bo be defined as above. Then
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the interior of P0 is given by

Po' = {u E Bo Iu(t) E K:*, t E (a,b), u(k)(a) E k*, and (_1)1.u(k.)(b) E h:*}

or equivalently

Po' = u E So I 63ui(t) > 0, t E (a, b), jiu~k) (a) > 0, and

(-.)k..u'.)(b) > 0, 1 < i < m}.

PROOF: The proof of this lemma is very similiar to the proof of Lemma 2.7. Let

Q = {E S I 6u,(t) > 0, t E (a,b), 6iUk)(a) > 0, (--j)k.6 uk.)(b) > 0, 1 < i <

m). First we will show that Q C Poo. Let u be an arbitrary element of Q, so we

want to find an e > 0 so that the ball B(u; e) C P1. Now, from the argument in

Lemma 2.7, we see that if we let el = d[a,b](u(M)(a), ak) > 0, then there exists a

bi > 0 such that u(k)(t) E B(u(k)(a);ci) C lZm , for all t E [a,a+ 61].

If we let 62 = Id[a,b]((--1) k . u(k.)(b), OK:) > 0, then there exists a b2 > 0 such

that (-1 )k.u(k.)(t) E B((-1)Cu(k)(a);62 ) C T.', for all t E [b - 52 ,b]. We note

that this gives us that d(b_ 62 ,b]((-1)k. u(k)(t), 19A:) > 62.

Since u(t) E k: for all t E [a+6 1 ,b- 2] if we let 63 = 1dja+6 ,b-b , D

then we have that e > 0 since the compact graph of u(t) on [a + &i, b - b2], and

OK: do not intersect.

Let c = min{e 1 ,C 2 , C} > 0. Then we have that B(u;e) C Po. To show this,

we let z E B(u; c). Then, similiar to the arguments in Lemma 2.7, we have that

z(t) E r for all t E [a, b - 6], for some >0.
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Also, since 1Iz - ull < -, we have in particular we have that lz~k.)(b) -

u(k.)(b)I = I(-)koz(k')(b)--(--1)kou(k.)(b) <E2. Then since (-1)k.u(k.)(b) E AK*

and

E2 = 1d[a,b]((-1)k.u(k)(b),OM) > 0, we have that (-1)k.z(k)(b) e K.

Now liz- ull < e also tells us that j(-1)k.z(k.)(t) - (-1)k'u(k*)(t) < e for

all t E [b - 2 ,b]. This gives us that (-1)kz(k.)(t) E AC- for all t E [b - b2 ,b. If

this were not so, then since (-1)k.z(k)(b) E V:* and (-l)k.z(k.) is continuous,

there would exists a to E [b - 62 ,b] so that (- 1k.)koz(k)(to) E MK:. But from the

note above we know that d[b. 6 2,b]((-1)k. u(k)(t), OK:) > e2 >_ e. This gives us that

iz(k.)(to) - u(ko)(to)l > E which is a contradiction. Thus (-1)kz(k)(t) E K- for

all t E [b-6,b.

This last statement tells us that for i = 1,2,... , m, 6 (-)k.z I&)(t) > 0 for

all t E [b - b, b]. Now, since z, )(b) = 0 for j = 0,1,...,k. - 1, i = 1,2,...,m,

we can use a Taylor series argument (as in the proof of Theorem 6), to show that

Sii(t) >_ 0 for all t E [b-6 2 ,b], i = 1,2,... ,m. Hence z(t) E K for all t E [b-6 2 ,b].

Combining our cases we have that z(t) E K for all t E [a, b]. But this

means that z E ?o, and since z was an arbitrary element of B(u;c-), we have

that B(u;,-) C Po. But u was an arbitrary element of Q and we found an e > 0

so that B(u; c) C P1. Thus we have that Q C ?P.

We now show that Po 9 Q. Let u be an arbitrary element of PT*. Now,

following arguments similiar to the ones in Lemma 7, we see that u(t) E 0 for
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all t E (a, b), and that u(k)(a) E ko.

Now suppose (-1)k.u(k*)(b) )Co. So there exists an i so that

6i(-1)k.u(k.)(b) < 0. Then for any e > 0 we can find a z E B(u;e) so that

6,(-1)~.~'~ )(b) < 0. Now, z ')(b) = 0 for j = 0,1,... ,k. So, again using a

Taylor series argument, we can show that 6izi(t) < 0 on (b - 6, b) for a sufficiently

small 6 > 0. But then z(t) )C for t E (b - 6, b) which tells us that z Po. This

contradicts u E PO*. Hence we must have that (-1)k.u(ko)(b) E A°.

So if u E Po we have that u(t) E )C° for all t E (a, b), and also that u(k)(a) E

,C0 and (-1)kou(k°)(b) E V . Thus u E Q, and since u was an arbitrary element

of 'o, we have that Poo C Q. Thus our lemma is proved.

With our Banach spaces and cones suitable defined, we can now proceed on

to our first existence result.

THEOREM 2.9. Let Ly = 0 be right disfocal, and assume that 6b6 1pii(t) _ 0, for

t E [a,b], 1 < ij < m, and that there is ato E [a,b] such that pi. .(to) > 0. Then

for eigenvalue problem (1)

(-1)"-' Lu = AP(t)u

T u = 0, (so (i1 > 0),

there exists an eigenvector zo E PI with corresponding positive eigenvalue Ao

which is a lower bound for the modulus of any other eigenvalue for the corre-

*sponding problem.
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PROOF: To solve this problem, we will seek the eigenvalues of the linear integral

operator M: B1 -+ B1 defined by

Mu(t) = j G(t, s)P(s)u(s) ds, a < t < b,

where G(t, s) is the Green's function for (2). Now the eigenvalues of the boundary

value problem (1) are reciprocals of the eigenvalues of the operator M. We note

that zero is not an eigenvalue of (1) since Ly = 0 is assumed to be right disfocal.

Now an argument using the Arzela-Ascoli Theorem shows that M is a com-

pact operator. We now show that M: P --* P1. Let u be an arbitrary element

of P 1. If we can show that bi(Mu(t))i > 0 for all t E [a, b], i = 1, 2,..., m, then

Mu E P . Consider the ith component of P(t)u(t), (P(t)u(t)),= EEm P,(t)u,(t)"

Now bij6 = 1, and 6
3u,(t) > 0 so we have that for all t E [a, b],

m

6,(P(t)u(t))j = 66ibpi(t)61 u1 (t) >_ 0,
j=1

since 6b6ipij(t) > 0 by hypothesis. From the note following Theorem 2.2, we have

that G(t, s) > 0 on (a, b) x (a, b). Thus

L bm

j(.Mu)j(t) = G(t, s) > bip (s)6iuj(s)ds > 0,
j=1

for t E [a, b],l < i < m and so Mu E Pi. Since u was an arbitrary element of P1,

we have that M is a positive operator, that is M: P, -* P1.

In order to apply Theorem 1.6, we must find a nontrivial uo E P1, and

an e. > 0 so that Mu. > Ou0 . Let u.(t) = e,, where ej. is the
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unit vector in /'m in the i. direction. We note that u E 8 1 . Now the jth

component of u.(t) is uoi(t) = 6b.Zj6 , where bii is the Kronecker delta

function. Thus 61u01(t) = {6,6j. ( }6,i. > 0, so u. E Pi. We have that

6i. u. (t) (t-) > 0, on (a, b] and that bi. u)(a) = 1 > 0.

We now consider Muo(t). Since M: P, --* PI, we know that j(Mu.)j(t) >

0 = biu 0 (t) for 1 j < m, j $ i.. When j = i. we have that

6,(Mu),(t) - jG(t, s) 6, .6jPoj(s)6juoj(s) ds

a ~

= IG(ts)pii*(s) (S ka)k ds

> 0, for t E (a, b],

since by Theorems 2.2 and 2.6, G(t,s) > 0 for t E (a,bI, s E (a, b), and pi. .(t.) >

0, pi.i° continuous. So we have that 6i. (Mu.)i. (t) > 0 for all t E (a, b].

Now, Theorem 2.6 tells us that G(k)(a,s) > 0 for all s E (a,b), so we can

see from above that j°(Muo).k) (a) > 0. Hence, we can find an cl > 0, suffi-

ciently small, so that bi.(Mu.) k)(a) - &6i.u.,°(a) > 0. Now 6,.(Mu.)2)(a) -

£16i. u()(a) = 0, forj =0,1,...,k-1. Thus we can find a6 > 0 so that

i. (Muo),°(t) - el i.Uoi(t) 0 0, for all t E [a,a + 5).

Now both i. (Mu.)j° (t) and i.iuo 1(t) are positive on [a + 6, b] so we can let

= minfa+6,bJ(6 i. (Mu. )i. (t) > 0.

02 maX[a+6,b](bi. u0i (t)
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This gives us that 6i.(Mu.)i.(t) - e2 6i.Ui.(t) > 0, for all t E [a + b, bi.

Finally, letting c. = min{el, 62} we havethat Si. (Mu.)j. (t) - e.6. u. (t) >

0, for all t E [a, b]. This gives us that Mu. > eu. with respect to the cone P 1.

By applying Theorem 1.6, the conclusions of our theorem follow.

We have a parallel theorem in the case that il = 0.

THEOREM 2.10. Let Ly = 0 be right disfocal, and assume that 6i6jpij(t) 0, for

t E [a,b], 1 < i,j < m, and that there is at. E [a,b] such that pi.a.(t.) > 0. Then

for eigenvalue problem (1)

(-1)I-I Lu = AP(t)u

Tou = 0, (so il = 0),

there exists an eigenvector z. E Po with corresponding positive eigenvalue A.

which is a lower bound for the modulus of any other eigenvalue for the corre-

sponding problem.

PROOF: Like before, we solve this problem by seeking the eigenvalues of the linear

integral operator .M,': 50 S Bo defined by

Mu(t)- 1  G(t, s)P(s)u(s) ds, a < t < b,

where G(t, s) is the Green's function for (2), under the boundary conditions Toy =

0. Again, the eigenvalues of the boundary value problem (1) are reciprocals of the

eigenvalues of the operator M, and we note that zero is not an eigenvalue of (1)

since Ly = 0 is assumed to be right disfocal.
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Now, an argument identical to the one in the proof of Theorem 2.9, shows

that our compact operator M maps PO into Po.

In order to apply Theorem 1.6, we must find a nontrivial uo E Po, and an

e. > 0 so that Mu. > c.u.. In this case we let

U(t) = (-1)k. (t-a) (t -b',,
k! k.!

where eio is the unit vector in Z'" in the i° direction. We note that u E So. It is

easy to see that 6, times the j th component of uo(t) is nonnegative. Hence u. E Pa".

We also have that 6bi° uoo(t) > 0 on (a, b) and that i.o. u) (a) = (1)k° (ab).!

an d (-1) °(bo" (k
and 1)k- i. (b)= : >0.

We now consider Muo(t). Since M: Pa -- 'Pa, we know that bi(Muo)j(t) >

0 = bjuj(t) for 1 < j < m, j 5 i°. When j = i we have that

62. (M.uo) 3.(t) - G(t,s)pi. °(s)(_ )k. (t - a)k (t - b)k. ds > 0,fa k k.!

for t E (a, b) since by Theorems 2.2 and 2.6, G(t, s) > 0 for t E (a, b), s E (a, b),

and pi. j.(to) > 0, pi. . continuous. So we have that bi.(Muo)j°(t) > 0 for all

t E (a,b).

Now similar to the proof of Theorem 2.9, we can find an el > 0, and a bi > 0,

so that 62. (Muo)j. (t) - c1 i. uo. (t) 0 0, for all t E [a,a +6].

Also, Theorem 2.6 tells us that (-1)k. G(k)(b,s) > 0 for all s E (a,b), so we
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can see from above that

( 1 )k. 6  (M u )k.)(b) ( -1)k' (k. S)p.,.(S)( 1) (t - a)k (t - b)k. d
to. ,- G (b k! k.! d

>0.

Thus, there exists an 62 > 0 so that (-1)k6i. (Mu.) k)(b)- 62( )k. 6i o1 (.,'(b) >

0. Now (-)k. i.(Mu.)')(b) - i2 (oi)k o 6* U (b) = 0, for" = 0,1,..., k-

1. Thus by using a Taylor series expansion, we can find a 62 > 0 so that

6i.(Muo)i.(t) - 2 6i.u0 i.(t) > 0, for all t E [b- 62 ,b].

Now both i. (Mu.)i. (t) and 6i. ui.(t) are positive on [a + 61,b - 2] so as

in the proof of the last theorem, we can find an C3 > 0 so that bi. (Muo)i. (t) -

e26i. Uoi,(t) > , for all t E [a +6il,b-6 2].

Finally, letting co = mintej, 6 2 ,,-3} we have that

6i. (Mu.)i. (t) - bi. u.i. (t) > 0, for all t E [a,b]. This gives us that Mu. > -. u.

with respect to the cone Po. By applying Theorem 1.6, the conclusions of our

theorem follow.

If we have stronger conditions on P(t), we get better results. Again we will

have parallel theorems.

THEOREM 2.11. Let Ly = 0 be right disfocal on [a, b) and assume 6j6jpji(t) _ 0,

1 < ij < m, for all t E [a, b], and pij equals zero only on a set of measure zero.
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Then for the eigenvalue problem (1),

(-1)n- 1 Lu = AP(t)u

Tju = 0, (so ii > 0),

there exists an essentially unique eigenvector z. in Pj, and its corresponding

eigenvalue is simple, positive and smaller then the modulus of any other eigenvalue

for this eigenvalue problem.

PROOF: As in the last proof, we define the compact linear integral operator M

by

Mu(t) = G(t, s)P(s)u(s) ds,

where G(t, s) is the Green's function for (2). We wish to show that M is a uo-

positive operator so that we can apply Theorem 1.8. To do this, we will show that

M: Pl\{0} - P'0 and then apply Lemma 1.5.

Let u be an arbitrary element in P1 \{0}. Then, there exists an

i. E {1,2,..., m.} and a t. E (a,b), so that 6ioUio(t.) > 0. (By the continuity

of Uio we can assume, without loss of generality, that to E (a, b).) Since uio is

a continuous function we have that there exists an interval to the right of to on

which 6i.uio is positive.

Now for each i = 1, 2,..., m, i6bi* pij. >_ 0, p,,° is continuous and zero only

on a set of measure zero. Thus, for each i, we can find an interval to the right of

0t 0 , on which each 6,6i.pii. is positive. Taking the intersection of these m + 1 right
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intervals, we have an interval (a,#) C [a, b] such that b6 ,.p .(t)b5o.uj.(t) > 0, for

all t E (a,fl), i = 1, 2,..., m. Thus, since G(t, s) > 0 for all t E (a, b], s E (a, b)

by Theorem 2.2 and Theorem 2.6, and since by hypothesis bi6bipii, 0, we have

that for each i = 1,2,... m,

m

b,(MU),(t) =1 G(t, s)bi 1 Zpi(s)ui (s) ds
j=1

_ jG(t, s) E 6p,,(s5.,u(s) ds
j=1

>0.

Thus we have that 6i(Mu)i(t) > 0 for all t E (a, b]. But this gives us that

Mlf(t) E A:* for all t E (a, b].

Now we also know by Theorem 2.6 that G(k)(a, s) > 0 for all s E (a,b).

Following the same argument as above, this gives us that (Mu)(k)(a) E V. Since

Mu(t) E k° for all t E (a, b] and (Mu)(k)(a) E C° we have by Lemma 2.7 that

Mu E P'. Now u was an arbitrary nontrivial element of P 1. Thus we have that

M: PI\{0} -- 1'P. So by Lemina 1.5, we have that M is a uo-positive operator.

Hence we can now apply Theorem 1.8, and the conclusions of our theorem follow.

If we have that ii = 0 then we have results similar to Theorem 2.11.

THEOREM 2.12. Let Ly = 0 be right disfocal on [a, b] and assume that 6,Sbpj(t) >

0, 1 <i,j < m, for allt E [a, b], and pij equals zero only on a set of measure zero.
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Then for the eigenvalue problem (1),

(-1)n- Lu = AP(t)u

Tou = 0, (so il = 0),

there exists an essentially unique eigenvector z. in 7o*, and its corresponding

eigenvalue is simple, positive and smaller then the modulus of any other eigenvalue

for this eigenvalue problem.

PROOF: As in the last proof, we define the compact linear integral operator M

by

.b

Mu(t) = 1 b G(t, s)P(s)u(s) ds,

where G(t, s) is the Green's function for (2), with boundary conditions Toy = 0.

We will again show that M is a uo-positive operator and then apply Theorem 1.8.

To do this, we again show that M: Po\{0} --+ Poo and then apply Lemma 1.5.

Let u be an arbitrary element in ro0\{0}. Then following arguments identical

to those in the last Theorem, we have that there exists an interval (a, 0) C [a, b]

and an i. so that bi6i.pjj.(t)6b.uj.(t) > 0, for all t E (a,fl), i = 1,2,...,m.

Then, since G(t, s) > 0 for all t E (a, b), s E (a, b) by Theorem 2.2 and Theorem
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2.6, and since by hypothesis 6i~io pii, ! 0, we have that for each i = 1,2,... ,

b[ M
bi(Mu)i(t) = G(t, s)6i EZpii(s)ui(s)ds

j=1

- bG(t, s) bjj 5p(s)uj(s) ds

>0.

Thus we have that ,5(Mu)i(t) > 0 for all t E (a, b). But this gives us that

Mu(t) E k * for all t E (a,b).

Now we also know by Theorem 2.6 that G(')(a,s) > 0 for all s E (a,b). Fol-

lowing the same argument as above, this gives us that (Mu)(')(a) E 0 . Theorem

2.6 also tells us that (-1)k-G(k.)(b,s) > 0 for all s E (a,b). Hence, similar to the

argument above, we have that

(-1)k°6,i(Au)(k)(b) > 0,

and so (-1)k'(Mu)(k°)(b) E C0.

Since Mu(t) E C° for all t E (a,b), (Mu)(k)(a) E )CO and (-1)k°(Mu)(k°)(b) E

JC* we have by Lemma 2.8 that .Mu E Po. Now u was an arbitrary nontrivial

element of Po. Thus we have that M: Po\{0) -* P.. So by Lemma 1.b, we have

that M is a uo-positive operator. Hence we can now apply Theorem 1.8, and the

conclusions of this theorem follow.
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We have now come to our main theorems which give comparison results for

eigenvalue problems with different boundary conditions. The boundary conditions

we will consider pertain to the n-tuples (i, il,..., .i-k) and (jl,j 2 ,... ,,-k). We

let Ty = 0 denote the boundary conditions y') (a) = 0 for i = 0, 1,... , k - 1, and

y0)(b) = 0 for j = 1,2,...,n - k. Also we let Sy = 0 denote the boundary

conditions y,')(a) = 0 for i = 0, 1,..., k- 1, and yOi)(b) =0 forti = 1, 2,..., n- k.

TIIEOREM 2.13. Let Ly = 0 be right disfocal and assume that the continuous

matrix function P(t) and Q(t) have the properties:

a) There is an io E {1,2,...,m} and a t. E [a, b] such that pi 0 j.(t.) > 0;

b) 0 < 6,cip,(t) _< b5,6qi(t), for t E [a, b], 1 < i, < m;

0 c) Each qi, = 0 only on a set of measure zero.

Further assume that (i 1,i 1 ,... ,in-k) < (jl,j2,.. .,j,-k) and that ij > 0.

Then there exists smallest positive eigenvalues A., A. of (1) and (3), respectively,

(-1)n- Lu = AP(t)u (-1)n - Lu = AQ(t)u

TIu = 0 Slu = 0.
both of which are positive, A. a lower bound in modulus and A. strictly less in

modulus then any other eigenvalue for their corresponding problems, and both of

their corresponding eigenvectors belong to P1 . Further, A. is a simple eigenvalue

and its corresponding eigenvector belongs to PO. Moreover, A. < A. and if A. =

A°, then P(t) = Q(t) on ja,b].

PROOF: Let G(t,s) be the Green's function for Ly = 0, T1 y = 0 and H(t,s)

be the Green's function for Ly = 0, Sy = 0. We define the integral operators
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M, N: B1 --+ 5 1 by
/. b

Mu(t) = Lb G(t, s)P(s)u(s) ds and Nu(t) = La H(t, s)Q(s)u(s) ds.

By Theorem 2.2, we have that 0 < G(t, s) < H(t, s) on (a, b)2 . So from earlier

proofs, we know that M, N: P1 - P 1 . Now by Theorem 2.9, M possesses a posi-

tive eigenvalue 1/Ao which is an upper bound, in modulus, for all other eigenvalues

of M, and its corresponding eigenvector z. belongs to P1. By Theorem 2.11, we

have that N has a positive, simple eigenvalue 1/AO, which is strictly greater, in

modulus, than all other eigenvalues of N, and its essentially unique eigenvector

v. belongs to Pl*.

To get a comparison between these two eigenvalues we need to show that

M < N, with respect to 'P1. Let u be an arbitrary element in P1. Then for each

fixed i E {1,2,..., m}, we have from the hypothesis,

ibjqij(t) > ,6jPij(t)) > O for t E [a,b], 1 < j < m.

Since u E P1, we know that ,juj(t) > 0 for all t E [a, b], 1 j < m. This gives us

that
m M

E Mij(O~uj(t) E b ,iPij(0~uj(t) > 0

j=l j=l

for t E [a, b], 1 < j < m. Then from Theorem 2.2 we have that

H(t, s) E biqij(s)uj(s) ds > L G(t,s) 6,pj,(s)u,(s)ds > 0
j=1 a j=1

b m 6Kbc~) ( d 0.
i(, H(t, s) E= qij (s)uj(s) ds) > i G(t, s) E=,Pij (s)uj (s)ds) 0.

fa j=1 j=
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Since i was arbitrary, this tells us that component wise,

bi( H(ts)Q(s)u(s)ds), > >iG(t, s)P(s)u(s) ds) > 0

for all t E [a, b], i = 1, 2,..., m. Thus,

( H(t, s)Q(s)u(s) ds - j G(t, s)P(s)u(s) ds) = (N - M)u(t) E I

for all t E [a, b]. Thus Nu > Mu with respect to the cone P1. Since u was an

arbitrary element of PI, we have that M < N.

Now (-, z.) and (-, v.) are eigenpairs of M and N respectively, so we have

that the inequalities of Theorem 1.11 hold. Also, similair to the proof in Theorem

8, we have that N is u.-positive. From above we have that M < N, and so we

can apply Theorem 1.11 to give us that - < -L or A0 < I\..

Finally, suppose that A. = A. - A, then Theorem 1.11 tells us that z" = kvo

for some nonzero scalar k. Then AP(t)z. = Lz. = kLv° = kAQ(t)v. = AQ(t)z°.

Thus AP(t)z, = AQ(t)z, or (Q(t) - P(t))z. = 0 since A # 0. Comparing each

component i of (Q(t) - P(t))z°, gives us that

E(q~i(t) - pij(t))Zoj(t) = 0, t E [a, b).
j=1

So that
m>:[6i6j(qi,(t) - pi(t))J6jz03 (t) = 0, t E [a, b].

j=1

Since z. E P' we have that ,5z.(t) > 0 for all t E (a, b]. This plus the fact that

6b6jq2j(t) >_ 6,6jpij(t) > 0 for t E [a, b], 1 < i,j < m, gives us

pij(t) = qij(t), t E (a, b], I < i,j < m.
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Finally, by continuity it follows that P(t) = Q(t) on the closed interval [a, b].

Our companion theorem for Theorem 2.13, requires more of a correlation

between the boundary conditions.

THEOREM 2.14. Let Ly = 0 be right disfocal and assume that the continuous

matrix function P(t) and Q(t) have the properties:

a) There is an i. E {1,2,...,m} and a t. E [a,b] such that pi.i. (t.) > 0;

b) 0 < bijpij(t) :_ 6 ibjqij(t), fort E [a,b], 1 < i,j m;

c) Each qij = 0 only on a set of measure zero.

Further assume that (ij, il,..., in-k) < (jl,j2,... ,jn-k), ii = 0 and that the

integer k. defined for (il,i2,. -, in-k) is also the k. defined for (j,j 2 ,...,j .- k).

Then there exists smallest positive eigenvalues A., A. of (1) and (3), respectively,

(-1) n - Lu = AP(t)u (-1)n- 1 Lu = AQ(t)u

Tou = 0 SoU = 0.

both of which are positive, A. a lower bound in modulus and A. strictly less in

modulus then any other eigenvalue for their corresponding problems, and both of

their corresponding eigenvectors belong to Po. Further, A. is a simple eigenvalue

and its corresponding eigenvector belongs to Poo. Moreover, A. < A. and if A. -

A., then P(t) = Q(t) on [a, b].

PROOF: The proof for this theorem is virtually identical to the proof of the last

theorem. We let G(t, s) be the Green's function for Ly = 0, Toy = 0 and H(t, s)

be the Green's function for Ly = 0, Soy = 0. We define the intcgral operators
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M, N: B0 --+ B0 by

Mu(t) = Lb G(t,s)P(s)u(s)ds and Nu(t)= L H(t, s)Q(s)u(s) ds.

By Theorem 2.2, we have that 0 < G(t, s) < H(t, s) on (a, b)2 . So from earlier

proofs, we know that M,N: 'Po --+ Po. Now by Theorer.- 2.10, M possesses

a positive eigenvalue 1/A. which is an upper bound, in modulus, for all other

eigenvalues of M, and its corresponding eigenvector z. belongs to 'Pa. By Theorem

2.12, we have that N has a positive, simple eigenvalue 1/A., which is strictly

greater, in modulus, than all other eigenvalues of N, and its essentially unique

eigenvector v. belongs to Po.

Now, the argument to show that M < N with respect to the cone Pa is

identical to the argument in Theorem 2.13. Thus, by applying Theorem 1.11 we

have that A. < A.. If A. = A. - A, then by following the argument in Theorem

2.13, we see that P(t) = Q(t) on [a, b].

0
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Comparison Theorems for Eigenvalue Problems

for Right Disfocal Differential Equations

I) INTRODUCTION:

Let n > 1, m > 1 and define Lu = u( n ) + pI(t)u(n- 1 ) +.. + pn(t)u where

u(t) is an m-column vector such that u E Cn([a,b), R-) and pi E C[a,b), i =

1, 2,... , n. Also let P(t), Q(t) be continuous m x m matrix functions on [a, bI and

let tl < t2 < ... < t, where ti E [a, b], i = 1, 2,... , n.

We consider the n-point right focal eigenvalue problem:

(1) (-1)"-Lu = AP(t)u

Tu=O

where Tu = 0 denotes the boundary conditions

u(-)(ti)= 0, = 1,2,...,n.

If G(t, s) is the Green's function for the scalar boundary value problem,

(2) (-1) n-'Ly = 0

Ty = 0,

where Ly and Ty are as above, but defined appropriately for the scalar case, then

under certain sign conditions on G(t, s) and conditions on P(t) we can show the
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existence of a smallest positive eigenvalue. And with further conditions on P(t),

that its corresponding eigenvector is essentially unique with respect to a 'cone'.

We also have comparison results for the eigenvalue problems (1) and (3),

(3) (-1)"-'Lu = AQ(t)u

Tu=O.

Our results are new, even in the scalar case. Our technique will be to use

sign conditions on the Green's function, appropriately define an integral operator

and then apply the theory of uo-positive operators with respect to a cone in a

Banach space. The theory of operators on a cone, can be found in great detail

in the books by Kranosel'skil [9] and Deimling [2]. Related papers include those

of Eloe and Henderson [3], Gentry and Travis [4], Hankerson and Peterson [5,6],

Keener and Travis [7,8], Kreith [10], Schmitt and Smith [11], Tomastik [12,13],

and Travis [14].

II) CONE THEORY:

The following will be a short review of the definitions and theorems we will be

using for our results. This theory was developed in great detail by Krasnosel'skiT

[9].

Let B be a Banach space and P a closed, non-empty subset of B. We say

that Pv is a cone provided that if U, v E P then au + fv E P for all a, 0 >_ 0, and

that if -u,u E P then u = 0, the zero element of B. We say that a cone P is
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reproducing provided that B = 7 -P - {u - vlu, v E P}. A cone is called solid if

it has a non-empty interior, 7* 5 0.

The cone will induce a partial ordering on our space B, if we write u < v to

mean that v - u E 7. If Al and N are operators on B, then we will write M" < N

(with respect to 7) provided that Mu < Nu for all u E P. A linear operator AM

on B, is called positive if 7 is invariant with respect to M, that is Al: 7' -- 7.

The operator M is called u.-positive provided u. E 7, and for every u E 7'\{0},

there exists positive k1 , k2 (generally depending on u) such that

k1u, < Mu < k2U..

We will be using the following theorems, which can be found in [9].

THEOREM 1. Let B be a Banach space and P C B be a solid cone. If M: B -+ B

is a linear operator such that M: "P\{0} -+7", then Al is u.-positive with respect

to P.

THEOREM 2. Let P be a reproducing cone and M a linear compact positive

operator. Assume there exists a nontrivial u. E 7 and an e. > 0 such that

Mu. > e.u.. Then M has an eigenvector z. E 7' with corresponding eigenvalue

A. > c. and A. is an upper bound for the moduli of the remaining eigenvalues of

M.

THEOREM 3. Let 7 be a reproducing cone and M a linear compact u.-positive op-

erator. Then M has an essentially unique eigenvector in 7 and the corresponding
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cigcnvalue is simple, positive and larger than the modulus of any other eigenvalue

of M.

Our last theorem of this section is from Keener and Travis [7], and is a

generalization of a result from Travis [14].

THEOREM 4. Let M and N be linear operators of which one is u,-positive. If

M N and there exists Ul,U2 E P\{0) and A1 ,A 2 > 0 such that Mul _ Alul

and Nu 2 _5A2u 2 , then A1 :_ \ 2 and if A1 = A2 then ul is a scalar multiple of

UL2

III) THIE GREEN'S FUNCTION:

In this section we will give sufficient conditions for the existence and give an

explicit form for the Green's function for our problem (2). We need the following

definition.

Definition: The differential equation Ly = 0 is called right disfocal on an interval

I if there does not exist a nontrivial solution y of Ly = 0 and points t, < t2 <

•- t, E I such that y(i- 1)(ti) = 0 for i = 1,2,...,n.

We will also need to introduce some notation. For each fixed s in the inter-

val [tI,tn], let {y.(t,s),y 1(t,s),... ,y,-I(t,s)) be the set of (linear independent)

solutions of Ly = 0, where

ykJ)(t, s)I= k = 6jk, 0 < j,k < n - 1,
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and bjk is the Kronecker-delta function

61k 0, forjok

1, for j = k.

We can now give a theorem about our Green's function.

THEOREM 5. Let Ly = 0 be right disfocal on [a, b]. Then the Green's function

G(t, s), for the right focal problem

(-1)-I Ly = 0

Ty= 0

exists and is given by:

fors [tk,tk+1], t8 0 Yi(ttI) ...

____0 Y!/ (tk2t) ... (t2,tl)

-1 'k-I . . Y(k-1)G(t, s) nk 0_) - o1 'l- (tk, t ) TI 1 (4 ,41)
Yn-I~~~ ~ ~ "t+I S) Ylk(kYtn-1kl~]

D y( 1(t+1,s y} t,+1t,) ... Y(k +1,tl
Yn(-+(tk+2,S) y 4 k+1)(tk+2 ,tl) _k+I)(t t)

Yn-1 (tnS Y1 (n, ... .Y - t ,t

if s < t then we replace the zero in the first row, first column by Yn-I (t, s) with

everything else remaining the same.

This holds for k =1,2,..., n - 1, and D is given by

y (t2, t,) y2'(t2,nt- ) • Y,,-I(t2,t,)
YJ (t3, t,) YY'(t3, t,) ... Yn"_,I(t3, ,,)

D=

(n-1) ( -1 (n-1)

Y1 (., t ) 2 (t, t) .. Yn I (t~tm
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PROOF: To show that G(t, s) is our Green's function for (1) we must show that

G(t, s) is well defined and that it satisfies the properties from Coppel [1]:

i) As a function of t, G(t,s) satisfies Ly = 0 on [ti,s) and (s,tJ;

ii) TG(-, s) = 0 for each fixed s;

iii) As a function of t, G(t, s) and its first n - 2 derivatives are continuous at

t = s, while G("-1 )(s+,s) - G(-')(s-,s) = (1-' = (I)n-1.

The Green's function, G(t, s) is well defined provided that D 7 0. To show

this, we will assume that D = 0 and show this lead to a contradiction. Let

A be the (n- 1) x (n- 1) matrix, A =(y()(tj+1 ,t1 )), for 1 < ij < n- 1,

so we have that IAI = D, where IAI is the determinant of A. Since D 0

there exists a nontrivial column vector 5 = (C 1,...,C,)T so that AC 0.

Let z(t) = Ciyi(t,ti) + C2 y2(t,tl) + + C,-1Yn-1(t,t). Since z(t) is a linear

combination of solutions to Ly = 0, we have by the linearity of L that Lz = 0.

Now z(ti) = 0 since each yj(ti,ti) = 0. Also z(i)(ti+j) = 0 for j = 1,2,... n-1,

since z(j)(tj+) is the j-row of A times the column vector C5 and AC = 0. So

L- = 0, Tz = 0 and z is not identically equal to zero since C is nontrivial. This

contradicts Ly = 0 is right disfocal. Thus D # 0 and G(t, s) is well defined. Now

that we have established that D 0 0, a standard argument using Taylor series will

show that D > 0.

To prove the properties i)-ii), we first fix s. as an arbitrary element of 't 1, t"].

Then to prove i), for t < s., we have G(t, s.) = d 2y1 (t, t1) + .. . + dny.-, (t,ti)
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where the di's are constants which can be determined by expanding the determi-

nant of G(t, s.) along the first row. Thus, in the variable t, G(t, s.) is a linear

combination of solutions of Ly = 0, and so is itself a solution of Ly = 0 on [t, s.).

Similarly, G(t, s.) is a solution of Ly = 0 on (s.,t.].

To show that G(t, s.) satisfies the boundary conditions, we first note that

G(tj, s.) = 0 since the first row of the determinant of G(ti, so) is all zeros. Also,

we have that G(k)(tk+l,So) = 0, for k 1,...,n - 1, since in this case the the

first row and the (k + 1)st row are equal, so the determinant is zero. Thus from

the properties of determinants we have TG(., s.) = 0, so ii) is proved.

0 To prove iii), let r and r be variables where r < s. and r > s.. Then, with
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so E [tk,tk+I] we have G(r,s.) - G(r,s.) =

0n- 7,s) Y y(t2, I) . 1(- t.I
0 v, (t, tI) ... (,-I(t, t)

o( n -r'ti) . .

o 2(t,t,) ... Y'-1
- (k) (k).(k+ ,t )

yn-(t (+l, S) Y1 (tk+l, ) .- • Ylr, -.. ,t,)

w-1,*-)( .s) (n- )r) =0 fr -1)r -Yn-I (t, S Yj (tn, tI) ... Y,,-I (tn,ti)

o0 yl(r,1) .. u-1 (r,) -

Y0f(2,) 01. Y2o e(t2, t l)

deriv s s, sie (k-T)(tk, ti)
(k)(k

Yn-j~~~ ~ ~ ~ (t("-.)Y (k+7(t,,,tl)

(n-1) Yl n (n-1)

n-I (7, so) yj1(r, tl) - yj(r, t) ... Yn-I (7, tI - ,(r, t)
0 Y'l(t2, tI) .. Y -1( t4 )

_ DI) - 0 Y/-k1 (tk,tl) ... Yn-I )(tk,tl)
(k ()(k).(k 1Yn-l2(tk+I,,o) Y1' (tk+l,ti) ... Yn-,. -~l ti)

• (•1 
,tn S- 

•n 
1 t~ i . n 1

n.-1) I (n-I)(t: ti

Now im,_oy)rt)-9)(t)}=0 for j =1,2,...,n - 1;i = 0,1,...,n -

1. Also li , _ yn(r7 so) =0 for i = 0, 1,...n- 2. Thus GO1)(s+,so) -

G(')(s-,, s.) = 0 for Z' = 0, 1,. ,n - 2, so we have that G(t, s.) and its first n - '2

derivatives are continuous at t = s.. Finally, since lim ,o y (-1 £ S) =1,w
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have G("-')(s, So) - G(n-1)(S., 8 o) =

1 0 ... 0
0 Yj'(t2,tI) .. '_-I(t2,ti)

nI-(k-)(k,D- ) - 0 Y1 -'(tk, tI .. Yn-I t ,t

D

(k) (k))D
YSoI (t+l sS) Y- (t+l, ) n- i)tis)

•f-1 •n1(t , , ... ~

Sne- w(tasSa) Yabryem tt1  , ) twhvht)(tst h e
i) Gt, >(t ,t .) tn) ... Y' - (t2,t)

(_ )-I yi(t3,t ) Y2'(t3, t) ... '.'_ (t3, t,,)

An--1)/ (t ,t (,,-I )(t tI) ... (,,-1 )(tn t
n-1 , ) 2 t , ,  n I !,,, l

So G(-1)"- D.)

SoG( -)( + , So-G(n-1)(s.-, So) = (-1)n - I and condition iii) is satisfied.

Since s. was an arbitrary element Of [I, 1 n, we have that G(t, s) is the Green's

function for (2).

W-e close this section with the following hypothesis:

HYPOTHIESIS (H). Let Ly = 0 be right disfocal on [a, b]. We assume that the

Green's function for (2), has the following properties:

i) G(t,s) > 0 for t E (ti~t,], s E (ti,t,,);

ii) G'(ti, s) > 0 for s E (ti, t,).

This hypothesis is not true in all cases, but we will show sufficient conditions

for (H) to hold for n = 2,3 and 4.
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IV) EXISTENCE AND COMPARISON RESULTS:

We will now introduce a suitable Banach space for our eigenvalue problem

(1). Let

B = {u E C"([ti,t,],7Z")Iu(ti) = 0)

with norm Ilull = maxo<i<n{max[,,,,.] lu(')(t)} where I" l is the Euclidean norm.

Following ideas from Hankerson and Peterson [5,6], and Tomastik's paper [13], we

let I, JC{1, 2,...,m} be such thatlUJ={f1,2,...,m} and I fnJ=0. (Itis

permissible for I = 0 or J = 0.) Let A: be the 'quadrant' cone in 7,' defined by

k = Ix = (xl,... , xm)I xi >_ 0 if I E I, xi < 0 if i E J).

0 Although some of our results will hold for any solid cone in 1?m, we will just

concern ourselves with k being a 'quadrant' cone in 7 m. Define b; to be the

discrete function bi = 1 if i E I, and 6i = -1 if i E J. We can then equivalently

define the cone Ak to be k = {x E tlm Ibiz xi 0 for i = 1,2,...,m}. This

also allows us to define the interior of )C as A:* = {zE Rm I ix > 0 for i =

1,2,... ,m}.

We now define the reproducing cone P C B by P = {u E B u(t) E A, t E

[t, t,,]}. This gives us the following Lemma concerning the interior of our cone P.

LEMMA 6. Let the cone P in the Banach space B be defined as above. Then the

interior of P is given by

P0 = {u E BIu(t) E V, t E (ti,t,] and u'(ti) E A:0}.
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PROOF: Let Q = {u E Blu(t) E K*, t E (ti,t,,] and u'(ti) E K*}. First we will

show that Q C P*. Let u be an arbitrary element of Q, so we want to find an - > 0

so that the ball B(u; e) C P. For a vector function x(t) on [&, 0] C [t 1 , t,,] we define

the distance function d j,,#](x(t), 8K9) to be the distance between the function x(t)

on [a,/3] and the boundary of the cone OK. Let el = d[t,,t2 l(u'(tl), OC), so we

have that el > 0 since u'(ti) E V . Now u' is a continuous function, so there

exists a b > 0 so that u'(t) E B(u'(t1 ); e1 ) C I m , for all t E [t1,tI + 6]. We note

that this gives us that d[1t , t , + 6] (u'(t), OA) > el.

We have that u(t) E KC° for all t E [tI + b, t,,]. Then, if we let e2 be

62 = 1d[t,+ 6,t,](u(t), OA:) we also have that C2 > 0 since the graph of u(t), which

is compact on ft1 + 6, t,,] and OK do not intersect. We note that in this case, ve

have that d[t1+6,i,](u(t), OK) > e2.

Let e = min{ti, 2 } > 0. Then we have that B(u;e) C P. To show this, we

let z E B(u; ). Then lz - ull < E so in particular we have that Iz'(ti) - u'(ti) <

= d[t,,t .(u'(tl), rX). This tells us that z'(t) E AZ*. Now z -ul < & also tells

us that Iz'(t) - u'(t)I < E for all t E [t, tI + 6]. This gives us that z'(t) E k 0 for

all t E [t1 , tI + 6]. If this were not so, then since z'(tI) E k*° and z' is continuous,

there would exists a to E [ti,t 1 + 6] so that z'(to) E OK. But from the note above

we know that dt,,t,+61(u'(t), OK) > el _ e. This gives us that Iz'(to) - u'(to) > E

which is a contradiction. Thus z'(t) E K for all t E [ti,t, + 61]. Now this in turn

tells us that for i = 1,2,... ,, 6iz(t) > 0 for all t E [tti + 6]. Thus 6,z,(t) is an
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increasing function with 6izi(tl) = 0 for each i. Hence we have that 6,zi(t) > 0

for all t E [t1 ,t1 + 6], for i = 1,2,...,m. That is, z(t) EICfortE [ti,ti +6].

Also, we have that z(t) - u(t)I < C _< e2 for all t E [t1 + 6,t.]. Thus,

z(t) 9K or else we contradict d11,+6, jj(u(t), ,KA) > e2. Since z(tj + b) E V° and

z is continuous, we must have that z(t) E Vo for all t E [t1 + 6, t,]

Thus z(t) E IC for all t E [ti, t,,]. But this means that z E 1', and since z

was an arbitrary element of B(u; c), we have that B(u; e) C P. But u was an

arbitrary element of Q and we found an - > 0 so that B(u; c) C P. Thus we have

that Q C P*.

We now show that P* C Q. Let u be an arbitrary element of P 0 . Suppose

there exists a t. E (tl,t,] so that u(t.) E 8a. This give us that there exists a

component of u, say ui., so that ui.(t.) = 0. Considering the scalar equation,

6j. ui.(t) > 0, it can be seen that for any e > 0, since 6i. ui.(to) = 0, we can find a

function 6i. zi° (t) E B(i. ui. ; c) so that 6, zi° (to) < 0. If we let the vector function

z(t) equal u(t) in each component except in the i. slot, and then in that slot let

(z(t))i. = zi.(t), then z E B(u;e). But z(to) C since 6i. zi.(to) < 0. Thus

z P. Now z was based on c > 0. Thus, for any e > 0 we can find a z E B(u; c)

and z P. This contradicts u E P". Thus u(t) E ko* for all t E (ti, t"].

Now suppose u'(tl) I A. So there exists an i so that 6,u (ti) < 0. Then for

any e > 0 we can find a: E B(u; E) so that 6jz'(tj) < 0. Thus 6iz! is decreasing

at tj. We have that zi(ti) = 0 so we can find a b > 0 so that 6izi(t) < 0 for any
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t E (ti, ti + b]. But this gives us that z(t.) K and so z V P, which contradicts

u E P*. Thus we must have that u'(ti) E I.

So if u E P0 we have that u(t) E V" for all t E (t1 ,t,], and also that

u'(ti) E k. Thus u E Q, and since u was an arbitrary element of 7P*, we have

that P* C Q. Thus our lemma is proved.

With our Lemma out of the way, we can now proceed on to our first existence

result.

THEOREM 7. Assume hypothesis (H) holds, ib2 jpij(t) > 0, for t E [ti, t, 1 <

i,j < m, and that there is a t. E [t 1 ,t,] such that pi.i.(t) > 0. Then for

eigenvalue problem (1)

(-1) - I Lu = \P(t)u

Tu = 0,

there exists an eigenvector z, E P with corresponding positive eigenvalue A. which

is a lower bound for the modulus of any other eigenvalue for the corresponding

problem.

PROOF: To solve this problem, we will seek the eigenvalues of the linear integral

operator M: B -- B defined by

Mu(t) = J G(t, s)P(s)u(s) ds, t1 < t < t,

where G(t, s) is the Green's function for (2). Now the eigenvalues of the boundary
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value problem (1) are reciprocals of the cigenvalues of the operator Al. We note

that zero is not an eigenvalue of (1) since Ly = 0 is assumed to be right disfocal.

Now an argument using the Arzela-Ascoli Theorem shows that M is a com-

pact operator. We now show that M: 'P -- P. Let u be an arbitrary element of P.

If we have 6i(Mu(t))i > 0 for all t E [ti, tn], i = 1, 2,..., m, then Mu E 'P. Con-

sider the ith component of P(t)u(t), (P(t)u(t))i= pi' p(t)uj(t). Now 6j6j = 1,

and 6juj(t) 0 so we have that for all t E [ti,t],

b,(P(t)u(t))1 = I: pjb (t)6iuj(t) >_ 0,
j=1

since 6i,8pjj(t) > 0 by hypothesis. From Hypothesis (H), we have that G(t, s) > 0

fort E [t1,t,,] and s E (t 1 ,t,,). Thus

6,(MU)j(t) =f G(t, s)Z6.6i jpi(s)6 uj (s) ds > 0
j=1

for t E [t, tn],1 < i < m, so Mu E 'P. Since u was an arbitrary element of P, we

have that M is a positive operator, that is M: 'P -- P.

In order to apply Theorem 2, we must find a nontrivial uo E 'P, and an

e. > 0 so that AMuo > eouo. Let uo(t) = (t - t)6j,*e,°, where ej. is the unit

vector in lRm in the io direction. This gives us that the jth component of uo(t),

Uoj(t) = (t - t )6jo 5°. j, where 6ij is the Kronecker delta function. Thus 6j u.j(t) =

{bjbo(t - ti)}6ioi >_ 0, so u. E P. We note that bj°uoo(t) = (t - ti) > 0, on

(t1 ,t,] and that 6j.u' (ti) = 1 > 0.
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We now consider Mu.(t). Since M: P - P, we know that 6j(Mu.)j(t) >

0 = 6.iu.(t) for 1 < j < m, j 0 i.. When j = i. we have that

b,* ( A'u-).. Mt = (t, s) E 5. 3pi. j(s)b uoj (s) ds
j=1

= ] G(t, s)6i. 6i.pi. j. (s)6. u.ij. (s) ds

t I

- G(t, s)pi. .(s)(s - tI)ds

> 0, for t E (t 1,t],

since by hypothesis (H) G(t,s) > 0 for t E (ti,t,], s E (ti,tn), and pi..(t.) > 0,

pi~i° continuous. So we have that 6i°(Mu.)i.(t) > 0 for all t E (t 1,t.]. Since

again by hypothesis (H), G'(ti, s) > 0 for all s E (ti, tn), we can see from above

that 6i. (Mu.)% (ti) > 0.

So for CI > 0 sufficiently small, we have that 6i. (Mu.)%o (t 1) - e1 6. tu,.i. (t1 ) >

0. Now 6i. (Mu.)i. (ti) - el6iu.i.(tj) = 0, so by continuity, there exists a b > 0

so that

6i. (Muo)j. (t) - e 6.u.(t) > 0, for all t e [ti,t 1 +6]. Also, both 6i. (Mu.)j. (t)

and 6j. u.j° (t) are positive on ft, + 6, t,] so we can let

C2 = min[t +6,t.1(6i. (Mu°)i. (t) > 0.
max[ ,+ 6,t~](bj. u01 . (t)

This gives us that

,i (Muo)i. (t) - 626i. u0 i. (t) > 0, for all t E [t1 + 6, ta].

Finally, letting c. = min{l, e2) we have that 6i. (Mu°)j. (t) - £.6. u.. (t) >
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0, for all t E [ti,t,]. This gives us that Mu. > .u. with respect to the cone "P.

By applying Theorem 2, the conclusions of our theorem follow.

If we have stronger conditions on P(t), we get better results.

THEOREM 8. Assume hypothesis (H) holds, and bibjpij(t) >_ 0, 1 < i, i < m, for

all t E [t1, t,,], and pij equals zero only on a set of measure zero. Then for the

eigenvalue problem (1),

(-1)n-1 Lu = \P(t)u

Tu = 0,

there exists an essentially unique eigenvector z. in P., and its corresponding

eigenvalue is simple, positive and smaller then the modulus of any other eigen value

for this eigenvalue problem.

PROoF: As in the last proof, we define the compact linear integral operator M

by

Mu(t) = j G(t, s)P(s)u(s) ds.

We wish to show that M is a u.-positive operator so that we can apply Theorem

3. To do this, we will show that M: 'P\{0} f - P and then apply Theorem 1.

Let u be an arbitrary element in P'\{0}. Then, there exists a t, E (ti,tn)

and an i. E {1,2,...,m) so that b2.u,.(to) > 0. (By the continuity of ui. we can

0 assume, without loss of generality, that t. E (t ,t,).) Since ui. is a continuous
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function we have that there exists an interval to the right of t. on which 6i. uio is

positive.

Now for each i = 1,2,... ,m, 6bibiopii. 0 0, piio is continuous and zero only

on a set of measure zero. Thus, for each i, we can find an interval to the right of

t0 , on which each bibi.pii. is positive. Taking the intersection of these m + 1 right

intervals, we have an interval (a, 3) C [ti, t,.] such that 6A.pi. (t)6j. ui. (t) > 0, for

all t E (a, 0), i = 1,2,...., m. Thus, since G(t, s) > 0 for all t E (t1, t.], S E (ti, t,)

by hypothesis (H), and 6iS,*piio >_ 0, we have that for each i = 1, 2,... ,

J in

6(Mu),(t) = G(t, s)6 Zpi(s)uj(s)ds

=]n G(t, s)Z1: i,py(s)b uj (s)ds

0__ G(t, s)6bbj0 p°p. (s)bjo ui° (s) ds

> 0.

Thus we have that 6b(Mu)i(t) > 0 for all t E (t1 ,tnl. But this gives us that

Alu(t) E k0 for all t E (ti,tnJ.

Now we also know by hypothesis (H) that G'(ti,s) > 0 for all s E (t7,t,).

Following the same argument as above, this gives us that (Mu)'(ti) E K. Since

Mu(t) E )CO for all t E (t1 ,t,] and (Mu)'(ti) E IC* we have by Lemma 6 that

;vu P°. Now u was an arbitrary nontrivial element of P. Thus we have that

M: P\{0} ---* P. So by Theorem 1, we have that M is a uo-positive operator.

Hence we can now apply Theorem 3, and the conclusions of our theorem follow.
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We also have comparison results between two focal point eigenvalue problems.

THEOREM 9. Assume hypothesis (H) holds and that the continuous matrix func-

tion P(t) and Q(t) have the properties:

a) There is an i, E {1,2,...,m} and a t, E [ti,t,,] such that pi..(t.) > 0;

b) 0 < 6i bjpij(t) < bi bjqj(t), fort E [t1 ,t,], 1 <_ i,j 5 m;

c) Each qij = 0 only on a set of measure zero.

Then there exists smallest positive eigenvalues A., A. of (1) and (3),

(-1)n- I Lu = AP(t)u (-1)"- 1 Lu = AQ(t)u

Tu = 0 Tu = 0.

both of which are positive, \. a lower bound in modulus and A. strictly less in

modulus then any other eigenvalue for their corresponding problems, and both of

their corresponding eigenvectors belong to P. Further, A. is a simple eigenvalue

and its corresponding eigenvector belongs to 1*. Moreover, A. < A. and if Ao 

A,, then P(t) = Q(t) on [tl,tn].

PROOF: We define the integral operators M, N :5 - B by

Mu(t) = j G(t,s)P(s)u(s)ds and Nu(t) = G(ts)Q(s)u(s)ds,I t , j u s

where G(t, s) is the Green's function for (2). We then have, from earlier proofs,

that M, N : P --+7. Now by Theorem 7, M possesses a positive eigenvalue 1/\,

which is an upper bound, in modulus, for all other eigenvalues of M, and its

0 corresponding eigenvector z. belongs to P. By Theorem 8, we have that N has
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a positive, simple eigenvalue 1/A., which is strictly greater, in modulus, than all

other eigenvalues of N, and its essentially unique eigenvector v. belongs to P*.

We will now show that M < N, with respect to P. Let u be an arbitrary

element in '. Then for each fixed i E {1,2,..., m}, we have 6bjb(qji(t) -pij(t)) >

0, for t E [t1 ,t], 1 < j < m. Since u E P, we know that bjuj(t) >_ 0 for all

t E [ti,t,], 1 < j < m. This gives us that

E bi(qi3(i) - p1j(t))uj(t) > 0

for t E [t1 ,t,], 1 J < m. Now hypothesis (H) tells us that G(t,s) 2! 0 on

(t1 ,t,") 2 . Thus

G(t, s) Z ii -pi (s))u,(s)ds > 0
j=1

b( G(t, S) E(qij (s) - pij (s))uj (s) ds) 2!0

ft ij=1

Since i was arbitrary, each component of f" G(t, s)(Q(s) - P(s))u(s) ds times 6i

is greater than or equal to zero for all t E It1, t,]. Thus,

f,7 G(t,s)(Q(s) - P(s))u(s)ds = (N - M)u(t) E )C for all t E [t1 ,t]. Thus

Nu > Mu with respect to the cone P. Since u was an arbitrary element of 1', we

have that M < N.

Now (-,z.) and (-, v.) are eigenpairs of M and N respectively, so we have

that the inequalities of Theorem 4 hold. Also, similair to the proof in Theorem 8,

we have that N is u.-positive. From above we have that M < N, and so we can

apply Theorem 4 to give us that - < L- or A. <.\ .



* 73

Finally, suppose that A. = A. - A, then Theorem 4 tells us that Z. = kvo

for some nonzero scalar k. Then AP(t)zo = Lzo = kLvo = kAQ(t)vo = AQ(t)zo.

Thus AP(t)zo = AQ(t)zo or (Q(t) - P(t))zo = 0 since A # 0. Comparing each

component i of (Q(t) - P(t))zo, gives us that

M

E(q,,(t) - pij(t))Zoj(t) = 0, t E [ti,,..
j=1

So that

j [6,6,(q,,(t) - pji(t))Jizoj(t) = 0, t E [t,,t.].
j=1

Since z° E P 0 we have that 6jz°(t) > 0 for all t E (ti,t,]. This plus the fact that

bibjqij(t) 4ib5pii(t) > for t E [t1 ,t,], 1 < ij < m, gives us

pii(t) = qij(t), t E (ti,t,], 1 < i, < m.

Finally, by continuity it follows that P(t) = Q(t) on the closed interval [tlt,).

V) EXAMPLES

In our final section, we will give examples for which hypothesis (H) holds.

ExamDle n=2:

In this example we have Lu = u"+pl(t)u' +p2(t)u. Let t1 , t2 be elements of

any interval I over which L is right disfocal. Then, from Theorem 5, our Green's

function for (2) is

I - 0 ,t_ t 5 S < t ,

G(t,s) = jy(124 0 y;(t 2 ,s) y (t 2,t 1 )
_______ y 1(t,s) y,(t,ti) < <t<

-(Tt ,, Y '(t2 , S ) Y (t2 ,t , ) 1
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Now consider y1(t, s) for any t, s E [tI, t 2]. We know that yj (s, s) = 0 and yi(t, s) #

0 for all t : s or else by Rolle's Theorem we contradict Lu = 0 is right disfocal.

Thus yi(t, s) < 0 for all t < s and yj (t, s) > 0 for all t > s. We also know that

yl (s, s) = 1 and that y' (t, s) # 0 for all t > s or else we again have a contradiction.

Thus we have that y'(t, s) > 0 for all t > s.

Then, when tj < t < s 5 t2 we have that

G(t, s)=

y'(t 2 ,tl)

So G(t, s) _ 0 and positive when tl < t < s.

When tj <s <t <t 2 we have

-1
G(t, s) = Yi (t, S)YI (t2, tI) - Y'I (t2 , S)Y1 (t, t1 )}Y'l(t 2 , tI)

Yl~~~ (tSY t l Y1(t, S)Yl(t2, tI) > 0.
Y'I(t 2 , tI)

Let z(t) = y1(t2,s)yI(t,tI) - y(t,s)y'(t 2 ,tI). Then z is a solution of Ly 0

and further, Z'(t 2 ) = 0 and z(s) > 0 since we have shown that G(t,s) > 0 on

(ti,s]. Thus we must have that z(t) > 0 on [S, t2) or else we contradict Ly = 0 is

right disfocal. Thus we have that G(t, s) > 0 on [s, t2 ] and hence G(t, s) > 0 for

t E Qt1 ,t 2 , s E (tI, t2)
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Also we have that

C '(t 1,s)= y'(t2, S) Y'(t 1,t 1)
Y' (t2,t )

__ y(t 2 , S)
y s (t 2 , t)

> 0, s E (tlt 2 ).

Thus we have that when n = 2, hypothesis (H) holds over any interval on which

Lu = 0 is right disfocal.

In our next two examples we will take L to be Ly = y~(). We note here that

when Ly = y(-), then Ly = 0 is right disfocal over any interval I. This can be

seen by the fact that if y is a solution of Ly = 0, which satisfies y(i-1)(tj) = 0,

for i = 1,2,... ,n,then y(n)(t) = 0, for all t E I. This tells us that y(n-1)(t) is

constant, but y('- 1 )(t,) = 0. Thus y(n- 1) = 0 so y(n- 2 ) is constant. But again

y (n-2) (t_) = 0, so y(,- 2) = 0. Continuing in this manner we get that y = 0.

Thus the only solution to Ly = 0 which satisfies the boundary contitions is the

trivial solution, that is, Ly = 0 is right disfocal on I.

By taking Ly y(), our set of n linearly independent solutions to Ly = 0

is {1,(t - s),...,(t- -)(n - 1)!}, where s is a fixed element of [t1 ,t,]. So

in our notation we have yk(t,s) =t-I), and for each k = 0,. .. ,n - 1, yk is a

solution to the initial value problem Ly = 0, y) = 6jk, 0 < j _ n - 1.

0 This will simplify our Green's function considerably, since y = Yk-j, for
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S< k and y.j) = 0 for j > k. Also we have that

Y'l (tt Y2(t2,t ... Y It 2,t

D=

Y"- (tn, tl) Y2 "- t",,I,)" . Yn_ -I (t., t,)

1 YI(t2, t) ... Yn-2(t2, t)
0 ... Y,-3(ts,t,)

0 0 ... 1

So D=



'I

Example n = 3:

When n = 3 our differential equation (-1)n- 1 Ly = 0 becomes Ly = y(3) =

0 with boundary conditions y(ti) = y'(t2) = y"(t3) = 0. We will show that

hypothesis (H) holds under the condition that (t 2 - t 1 ) > (t3 - t2). It can be

shown that if (t 3 - t2) > (t 2 - t) then hypothesis (h) does not hold.

From Theorem 5 we have that for this equation, our Green's function is

for s E [t,t2]
0 Y1 (t,t,) y2(t, t])

Y1(t2,s) 1 Y1(t2, t) t1 < t < S < t 2 ,

1 0 1

Y2(t,s) y1(t, t) y2(t,)tl

Y1(t 2, s) 1 Y1(t 2 ,tl) t I < t <13,
1 0 1

G(t,s) = for s E 1[t2,t3]

0 y(,t) y2(t,)tl

0 1 Y1(t2,t )< <1 tS < t3,

1 0 1
Y2(t, S) Y1 (t, t) Y2 (t, tl)

0 1 y 1(t 2 ,tl) t2 < S < t < t 3 .

1 0 1

For hypothesis (H) we need to show that G(t.s) > 0 for t E (t1,t3], s E (t1,t3),

and that G'(t1 ,s) > 0 for s E (tl,t 3 ). We will first show that G'(tl,s) > 0 for

s E (t),t3). First, let s E (t],t2]. Then we have

0 y' (ti,ti) y2(t,tl) 0 1 0

G'(ti s)= Yl(t2,S) 1 Y1 (t 2 ,ti) = Yl(t 2,s) I Y,(t 2 ,t,)

1 0 1 1 0 1

y,(t2, 1 s) (t2,-tl)
1 (2,) = y(t 2 ,tl) - yl(t2,s)

1 10= (12 - t1) - (t 2 - s) = S -- >0O.
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If we have that s E [t2, t.;), then

0 y'1(ti 't I) y2(tI, t 0 0 1 0

G'(ti,s) =0 1 YI(t 2 ,tl) =0 1 Y1 (t 2 , ti

1 0 1 0

1 0 _

1 1 (t2 , tI) -y 1(t2 , tl)=(t2 - t) >0.

Thus for s E (tl,t 3) we have that G'(ti,s) > 0.

We will now show why the condition (t3 - t2 ) :5 (t 2 - t1 ) will insure us that

G(t,s) > 0 when t E (tl,t3], S E (tl,t3). We have two cases to consider, when

sE (t 1 ,t 2] and s E [t2,t3).

Case 1) Fix s E (tl, t 2].

If t E (ti, s] then we have G(t, s) = 0, G'(tl, s) > 0and

0 0 1
G/(tS) = y1(t 2,s) 1 Y1(t2,t -

1 0 1

So G(t, s) is concave down on (tj, s] and G(tj, s) = 0 and G'(tl, s) > 0. Thus,

if G(s,s) > 0, then G(ts) > 0 for all t E (t1,s]. Now G(t,s) is continuous at

t = s, so if we can show that G(t, s) > 0 for all t E [s, t3] then we will have that

G(t,s) > 0 for all t E (tI1t3], where s is fixed in (t 1 ,t 2].

Let t E [s, t3] and define

Y2(f,S) yI(t,t1) Y2(t,t1)

f(t) = y1(t2,s) 1 yl(t 2 ,ti)

1 0 1

for t E [t1, t 3 ]. Now f(t) is a three times differentiable function and f(t) E G(t, s)

0for t E [S, t3]. Thus, f(t) is a solution to our differential equation Ly = 0 and
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satisfies the boundary conditions y'(t 2 ) = 0 and y'(t3) = 0. Since f.'(t) = 0,

f"(t) is equal to a constant. But f"(t3 ) = 0 so f"(t) = 0 and we have that f'(t) is

equal to a constant. But f'(t2) = 0 so f'(t) = 0. Thus f(t) is equal to a constant

on [tl, t3 ]. Evaluating f(t) at t1 gives us

y2 (tl,s) yI(tl,tl) y2(tl,tl) y2(tl,s) 0 0

f(tl) = y1(t2,s) 1 yi(t 2 ,tl) = yl(t 2 ,s) 1 yl(t 2 ,tl) =y 2(ti,s).

1 0 1 1 0 1

So f(t) = f(tl) = y2 (tl, s) =(, 2!8,2 > 0, since s E (t , t 21. Thus G(t, s) > 0 for

t E [s, t3] when s E (t1, 2]. So we have that when s E (t 1 ,t 2], G(t,s) > 0 for all

t E (tl,t 3].

Case 2) Fix s E [t2 , t3 ).

When t < s, we have that G(tl,s) = 0, G'(tls) > 0, and like in case 1,

G"(t,s) = -1. So, like before, we only need to consider G(t,s) when t E Is, t 3].

Let t E [s, t3] and define

Y2(t,S) YI(t,tl) Y2 (t, t1)
f(t) = 0 1 yI(t2,tl)

1 0 1

for t E [tht3l. So f(t) = G(t,s) when t E [s, t3 ]. Again we know that f."(t) = 0

and that f"(t3 ) = 0. Thus f'(t) is a constant. Evaluating f(t) at s we have

y1 (s,s) 1 y (st,) 0 1 y,(s,ti)

f'(s)= 0 1 yl(t 2 ,t1 ) = 0 1 y1(t 2 ,tl)

1 0 1 1 0 1

= Yl(12,tl) - y(s,tj) = (t 2 - t) - (s - tl) = t2- s < 0.

Thus f'(t) 5 0 so f(t) is non-increasing on [t, t3j. So if f(t 3 ) > 0 then we would

have what we want, 0 < f(t) = G(t, s) for t C fs, t3]. If we expand f(t 3 ) along the
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first column, we get

Y2 y(t3, S) Y (t3, t1) Y2(t3, tl) Y1 (t3 ,ti) Y2(t3,t1 )
ft)= 0 1 Y1 (t 2, tl) Y2 y(t3,S) + Y1 y(t 2 , tl )

1 0 1

= Y2(t 3,S) + {Y1i@ 3 ,ti)Y1(t 2 ,ti) - Y(3t~

= (t3 2 + {(t 3 -tl)(t 2 -t 1 ) (t3 -tl) 2 }

=_ - )2 (t3 - t1) {(t2 - t)- (t3 - t2)}

2! 2!

Now 2! is positive, but may be small, so to insure that f(t3) > 0 we must have

(t3 - t 2 ) <_ (t2 - tI). Thus if this holds, we have that f(t) > 0 and so G(t, s) > 0

for all t E (tI,t 3 ] and s E [t2 ,t 3 ).

Hence for the boundary value problem, Ly = y( 3 ) - 0 and Ty = 0, we have

that hypothesis (H) holds provided that (t 3 - t2) < (t 2 - tl).

Example n = 4:

In our final example we will take our differential equation to be (-1) - I Ly =

y(4) = 0, with boundary conditions y('-')(t,) = 0, for i = 1,2,3 and 4. Under

the conditions (t2 - 11 ) > (t4 - t2) and (f3 - f2) >_ (t 4 - t 3 ), we have that hypothesis

0(H) holds. For this equation we have that the Green's function is
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for s E [tl,t 2]
0 YI(t, tI) Y2(t, t ) y3(t, tl)

_ y2 (t2,s) 1 y(t 2 ,ti) y 2(t 2 , t l <) t S t

y1 (t 3 ,S) 0 1 y1(t,t)

1 0 0 1

Y3(t, S) Y1(t, t,) y2(t, ti) y3(t, t)

y2(t 2 ,s) 1 y(t 2 ,ti) y2(t 2 ,t6)

y1(t 3 s) 0 1 yj(t,t)

1 0 0 1

for SE [t 2, 6]
0 Y, (t,t ) Y2(t,) tl Ys(t, tl)

0 1 yl(t2,tl) y2 (t 2 ,t) t <t 5S5t

y1(t6,s) 0 1 y1(,(t tl

G(t,s) 1 0 0 1
Y3(t, S) Y1 (t, 6 Y2 (t,) Y3(t, t)

0 1 y 1(t 2 ,i6) y2(t 2 , t) t2 < S 5 t 5 t4

y1(t 3 ,s) 0 1 y1(t,t)

1 0 0 1

for s E [t, t4]

0 y,(t,t) y2(t,t 1 ) y3 (t,ti)

-0 1 Y1 (t2,tl) y2(t2, tl 5t) <t

0 0 1 yI(t 3 ,tl)

1 0 0 1

y3(t,S) y1(,t,) yt2(t,tl) y3(t,tl)

_ 0 1 y1 (t2,tl) y 2 (t 2 ,ti) t3 < S t 5 t4

0 0 1 y1(6s,tl)

1 0 0 1

We will first show that G'(t1,s) > 0 for all s E (t,t 4 ). In all cases, we have that

the first row of G'(t, s),

0 .'(i) = (O,y',(t,t,),y'2(t,t,),y'(t,ti)) = (0,1,y,(t,t 1 ),y2 (t,t,)). So l4(t,) I
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(0, 1, 0, 0). If we expand G '(tI, s) along the first row, we have

Y2 (t 2 , S) yi(t2,tl) Y2 (t2, t I)
y1 (t3 ,s) 1 y1(t3,tl) tl <_ S 5 t2,

1 0 1

0 y(t 2 ,ti) y2 (t2,)tl

G'(t1 ,s) = y(t 3 ,s) 1 y 1(t3,tl) t 2  S t 3 ,

1 0 1

0 y1 (t 2 ,t1 ) y2 (t 2,tl)

0 1 yj(t 3, t) t 3  s 5 t4 .

1 0 1

If we consider G'(tl, s) as a function of s, we can define functions hi(s) on [tl, t4]

for i 1, 2, 3 to be

y2 (t 2 ,s) y1(t 2 ,tl) y2 (t 2 ,ti)

hi(s) = y1(t 3 ,s) 1 Y(t 3,tl) tl < S 5 t4 ,

1 0 1

o Y(t 2 ,ti) y2(t 2,tl)
h2(s) = y1(t 3 ,s) 1 y1 (t 3 ,tl) tl S < t4 ,

1 0 1

0 y1(t 2 ,ti) y 2 (t 2 ,tl)

h3(S) = 0 1 yi(t 3 ,t ) tl S 5 t4.
1 0 1

Then hi(s) G'(ti,s) when S E [ti,ti+j], for i = 1,2,3. We will need to take the

derivative of these functions so we note that (4) j1 yk(t,s) = (-1)jyk-j(t,s) if

k > j and zero otherwise. Also we have that hi(t 2 ) = h2 (t 2) and h2 (t 3 ) = h3 (s),

since h3 is a constant function.

Now h I(t 1 ) = 0 since, in this determinant, the first and last columns are
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equal. Also, we have that

Yj(t2,S) Y1(t2;tI) y2(t2,tl)

h'(s) = - 1 1 y,(t3,tl)

0 0 1

so that h'(ti) = 0 since, in this case, the first and second columns are equal.

Finally,

1 Yj(t 2 ,tI) y2(t 2 ,tl)

h"(s) = 0 1 y,(t 3 ,t) = 1.

0 0 1

The last equation gives us that h' is increasing on [t1,t 4]. Now h'(t1 ) = 0 so

h' > 0 on (tI,t 4]. So h, in increasing on this interval and h1 (t j ) = 0. Thus we

have shown, in particular, that hi(s) > 0 for all s in (tl,t 2].

* Now

0 yx(t2,tj) y2(t2,t)'

h(s)=- 1 1 y1(t3,ti) = y(t2,l) = (t2 -tI) >0.

0 0 1

So h 2 is an increasing function with h 2(t 2 ) = hl(t 2 ) > 0. Thus h 2 is positive on

[t2 , t3].

Finally, h3 is constant and h3(S) = h2 (t 3) > 0. So h3 is positive on [t3,t4].

Putting this all together we have that G'(ti,s) > 0 for all s in (t 1 ,t 4).

We will now show why the conditions (t 2 - tI) _> (t 4 - t 2 ) and (t 3 - t2 ) >

(t 4 - t3 ) insure us that G(t,s) > 0 for (t,s) E (tI,t 4] x (tI,t 4). We have three

cases to consider.

Case 1: Fix s E (tI,t 2]
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For t, <t <s we have that

0 0 1 YI(tt 1 )

G 1(ts) = Y2 (t 2 ,s) 1 yI(t 2 ,tI) y2(t 2 ,ti)
y1(t 3 ,s) 0 1 yj(t3,ti)

1 0 0 1

0 1 Y1(t,ti)

= - (t3 ,S) 1 yI(t 3,tI)

1 0 1

= yI(t 3 , s) - {yI(t 3,tI) - yI(t,tI)}

= (t 3 - S) - (t 3 - tI) + (t - tj)

=t-s<0 sincet<s.

So G(t, s) is concave down on (ti, s), G(tj, s) = 0 and we have already shown that

G'(tl, s) > 0. Thus if G(s, s) > 0, then G(t, s) > 0 for all t in (tj, s]. Now, since

G(t, s) is continuous at t = s, we only need to show that G(t, s) > 0 for t > s.

We know that in t,t 0 s, G(t,s) satisfies y(4) = 0. Also, since t > ss E

(t1, t2], G(t, s) will satisfy the boundary conditions y(i-1)(ti) = 0, for i = 2, 3 and

4. So G (4)(t, s) = 0 which tells us that G (3 )(t, s) is a constant. But G (3 )(t 4 , s) = 0

so G (3)(t, s) = 0 which tells us that G"(t, s) is a constant. But again, G " (t 3 , s) =

0 so G '(t, s) is a constant. Finally, G'(t2 , s) = 0 so we have that G(t, s) is constant

for t > s. Now, let f(t) be

y3 (t,s) y,(t,tI) y2(t,t,) y3(t, t)

y2(t2,S) 1 y1(t 2 ,t 1 ) y2 (t 2 ,tI)
Y1 ,(t3,s) 0 1 YJ(t3,tl)

1 0 0 1
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So we have that f(t) = G(t,s) when t E [s,t 4]. Evaluating f at ti gives us

Y3(tlS) Y1(tltj) y2(t,,t,) y 3(tl,tl)

y2 (t2 ,s) 1 yl(t 2 ,ii) y2(t 2 , t)
y1(t6,s) 0 1 y1(t6,t )

1 0 0 1

y3(ti, s) 0 0 0

Y2 y(t 2, S) 1 Y1 (t 2, tl) Y2 (t2 ,ii)

Yi(t,s) 0 1 yi(tS,t 1 )
1 0 0 1

-Y3(ti,.s) - (t - 3 > 0, since tj < s.
3!

Thus f(t) > 0 for all t in [t,t 4]. So G(t,s) > 0 when t E Is, t4 ]. But this implies

that G(t,s) > 0 for all t E (t 1,4 4] when s E (tl,t 2].

Case 2: Fix s E [t2 , t3]. Let t E (ti, s] and consider G"(t, s). As in Case 1, we will

have that G "(t, s) = t - s < 0. This can be easily seen since the only difference

between this Green's function and the one in Case 1, is the element y2 (t2 , s), which

lies in the second row, first column slot. After taking two derivatives of G(t, s),

we will expand along the second column, which has only one nonzero element, in

the second slot. This will eliminate the element y2( 12, s), and G "(t, s) will be the

same as in Case 1. Thus G"(t,s) < 0, so G(t,s) is concave down on (t 1 ,sj. Since

G(ti, s) = 0 and G '(ti, s) > 0, we only have to show that G(s, s) > 0. But then,

by continuity, we only need to show that G(t, s) > 0 for t E Is, t 4].

We now let t E [s, t4 ]. We know that G(t,s) is a solution to y( 4) = 0 on (s, t4]

0 and satisfies the appropriate boundary conditions. So we have that G (4)(t, s) 0



O 86

and G (3)(t 4 , s) = G"(t3 , s) = 0. This gives us that G'(t, s) is a constant function.

Let f(t) be defined on t E [t1 ,t 4] by

y3(t, S) YI(t,tI Y2(t, t) y3(t,tI)

f ( 0 1 y1(t 2 ,t) y2(t 2 ,t )

YI(6, S) 0 1 Y1 (6, t)

1 0 0 1

So f(t) = G(t,s) when t > s. This then gives us that f'(t) is a constant function.

Evaluating f' at t 2 and using propert. 3 of determinants we have

Y2(t2,S) 1 y(t 2, t) Y2(t2,ti)

(t2) 0 1 (t2,I) Y2(t2,t)
y(t,s) 0 1 yI(1,tI)

1 0 0 1

!/2(t2, S) 1 YI (t 2 , tI) Y2(t 2 , ti
0 1 yi(t2 ,tI) y2 (t2 ,tI)

0 0 1 y1(t3 t)
0 0 0 1

0 1 y1(t 2 ,tl) y2 (t2 , ti)

0 i y1 (t2, t) y2 (t2 ,tI)

yI(t 3,s) 0 1 Yl(t, t)

1 0 0 1

- 2(t2 ,S) - 2! < 0.

So f(t) = G'(t,s) 0. Thus G(t,s) is a nonincreasing function on (s, t4]. So if

G(t 4 , s) > 0, then we would have that G(t, s) > 0 for all t in (t1 , t4].

At this point we ask ourself, which s value in [t2 , t3 l give us the 'least positive'

G(t 4 ,s) value? Considering dG(t 4,s) as a function in s we have
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Y2 (t4 ,S) yI(t 4 ,tI) y2(t 4 ,tI) y3(t4 ,tI)

d G(t4,S) 0 1 yI(t 2 ,ti) y2 (t 2 ,ti)

ds -1 0 1 yl(t3,tl)

0 0 0 1

Y2 (t4 , S) Yl(t 4 ,ti) y2 (t4 ,tl)

= 0 1 y(t 2 ,t)

1 0 1

= y2 (t 4 ,s) + {yI(t 4 ,tl)yI(t 2 ,t)- y2 (t 4,tl)}

= (t4 ! S2+ (t4 - tl)(t2 - tI) - (t4 -2! t , )2

(t4 - S)2 + (t4 - t ( 1- 2! + 2!(t - )- t - 2 J

2! 2!

Since we required that (t2 - tI) >_ (t 4 - t2 ) then we have that -4 -G(t4 ,S)> 0 for

all s E [t2, t3]. Thus under this requirement we have that G(t 4 , s) is an increasing

function in s, so G(t4 ,t+) _< G(t4 , S) for all s E [t2 ,t 3]. Now we know that G(t,s)

is a continuous function in both t and s and so G(t 4 ,t2) = G(i ,Q-) = G(t4 ,t 2 ).

And we proved in the previous case that G(t, s) > 0 for all t E (t], t4], s E (t, 2 ].

Thus 0 < G(t4 ,t 2 ) : G(t4 ,s) for all s E [t2, t4l provided that (t 2 -ti) ! (t 4 -t 2 ).

Summing up, we have shown that if (t 2 -t 1 ) _> (t4 - t 2), then G(t,s) > 0 for

all t in (t1 , t4], s fixed in [t2 , t 3 ].

Our final case is when s is an element of [t 3 , t 4 ).

0 Case 3: Fix s E [t3, t 4 ).
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Let t < s and consider G "(t, s) which is

0 0 1 yi(t, ti)

0 1 yI(t 2 ,tI) y 2 (t 2 ,tI)
0 0 Y1 y (t 3 ,tI)

1 0 0 1

0 1 Y1 (ttI) I Yi(t,ti)

= 1 yI(t 2,tI) y2(t 2 ,tI) = 1 y(t,t)

0 1 y1(t 3 ,) t )

= yl(t,ti) - yl(t 3 ,ti) = (t - t) -(t3 - tI)

= (t- t3).

This gives that G(t, s) is concave do-,7n on [It, t3 ) and concave up on (t 3 , s]. Since

G(tI, s) = 0 and G'(t1 , s) > 0 then all we have to worry about is the sign of G(t, s)

for t E [t3,s]. We know G'(t2 ,s) = 0 and G"(t,s) = t - tz, so G'(t,s) < 0 on

(t 2 , t 3] and then begins to increase. Now, if g(t) is a third order polynomial, it is

easy to see that if g'(a) = 0 and g"(b) = 0, then g'(c) = 0, where c = b + (b - a).

Thus, since G(t, s) is a third order polynomial and G'(t 2 , s) = 0 and G"(t 3 , s) = 0

we must have that G'(t.,s) = 0 where t. = t3 + (t 3 - t 2 ). {This is easily verified

for G(t, s), although algebraically horrendous.)

Now we know that s < t 3 + (t3 - t2 ) since we required that t4 _< t3 + (t3 - t 2),

that is (t 4 - t3) :5 (t 3 - t2 ). Thus we have that G(t,s) will be decreasing on

(t 2 , s]. This gives us that if G(s, s) > 0, then G(t, s) > 0 for all t E (ti, s]. Again

by continuity of G(t,s) at t = s, we only need to show that G(t,.s) > 0 for all

0t E [s,t 41.
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Let t be in the interval [s, t 4] and consider G"(t, s) which is

yi(t,s) 0 1 y(t,ti)

G (s) 0 1 y1(t2, t) y2 (t 2, t)

0 0 1 y1(t 3 ,tl)
1 0 0 1

yi (t, S) 1 y, (t, ti)

- 0 1 Y1 (t3,tl)

1 0 1

= -y 1 (t,s) - {yj(t3,tl)- y1(t, t )}

= -(t - S) - {(t3 - tl)- (t - t, )}

=(s-t 3 )>__0, sincet 3 <s<t 4.

This gives us that G'(t, s) is nondecreasing for t E [s, t4]. If we could show that

G'(t4 ,s) < 0 then G(t,s) would be a decreasing function on [s,t 4 ]. Then, if

G(t4 , s) > 0 we would have that G(t, s) > 0 for t E [s, t4]. Consider

y2(t 4 ,s) 1 y1(t4,tl) y2(t 4 ,t )

G'(t4 , S) = 0 1 y1(t2,tl) y2 (t 2 ,t )

0 0 1 yj(t 3 , t)

1 0 0 1

1 y1 (t4 ,t) y2(t4 ,t )
= -Y 2 (t4 ,S) + 1 Y1(t2 , t) Y2(t2 ,tl)

0 1 yi( 3 , t)

Now -y 2(t 4 , s) = {(t4 -s) 2 /2!} < 0 so we will only consider the determinant term.

We now define the function h(r), to be the determinant term with tj replaced by
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r. So

1 Y1 (t 4, r) Y2 (t 4, r)

h(r) = 1 yI(t2,r) y2 (t 2 ,r) , which gives

0 1 y1 (t 3 , r)

1 1 Y2(t4,r) 1 Y1(t 4 , r) Y1(t 4 ,r)

h'(r) = - 1 1 y 2 (t 2 ,r) - 1 y1(t2,r) PI(t 2 ,r)

0 0 Y1(t,r) 0 1 1

-0.

Thus h(r) is a constant. Evaluating h at t4 gives us

1 Y1 (t4 ,t 4 ) Y2(t 4 ,t 4 ) 1 0 0
h(t 4 ) = 1 y1(t2,t 4 ) y2 (t 2 ,t 4 ) = 1 yl(t2,t4) y2 (t2,t 4 )

0 1 yl(t6,t4) 0 1 Yi(t3,t4)

= Y1 (t 2 , t4 )YI(t3 , 4 N Y2 (t 2 ,t4 )

(t2 -t4 )2
= (t 2 - t 4 )( 3 - t4) -

(t4 - t2)
2

-(t4 - t 2 )(t 4 - t3 ) ( 2!

(t4 - t2 )
- 2! {(t4 -t 3)-(t 3 - 2)}.

Thus we have that h(r) _ 0,{and so our determinant is < 0}. provided that

(t 4 - t3 ) _< (t6 - t2 ), our earlier constraint! This gives us that G '(t 4 , s) _< 0, so we

have that G(t,s) is decreasing in t on [s, t4] provided that (t4 - t3) < (t6 - t2 ).

Hence if G(t 4 ,s) > 0, then G(t,s) > 0 for all t in [s, t 4].

If we consider G(t 4,s) as a function of s, then we wish to find the s value

which will give us the 'least positive' value of G(t 4 , s). Taking the derivative with

respect to s gives us
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-Y 2 (t4 ,S) y(t 4 ,tI) Y2(t 4 ,tI) y3 (t4 ,tl)

d G ) = 0 1 y1(t,t,) y2 (t 2,tI)

ds 0 0 1 YI(t3,t)

0 0 0 1

= Y2(t4, S) = (t4 - S)2 > 0.2! ,0

Thus G(t 4 ,s) is increasing in s for s in [t3 ,t 4 ). This gives us that G(t 4 ,t 3 ) <

G(t 4 , s) for all s E [t3 , t4 ). But from Case 2) and continuity we know that

G(t 4 , t3 ) > 0 provided that (t 2 - t 1) >_ (t4 - t 2). Hence we have that if (t2 - t1 ) >

(t4 - t2 ) and (t 3 - t 2 ) >_ (t4 - t3 ) then G(t,s) > 0 for all t E (tI,t 4 ], s E [t3 ,t 4 ).

Thus, combining all of our cases, we have shown that if we have (t 2 - tI) _

(t4 - t 2) and (t 3 - t2) >_ (t4 - t 3) then G(t,s) > 0 for all t E (tl,t41, s E (tl,t 4 ).

Since we also showed that G'(ti,s) > 0 for all s E (tl,t 4 ), we have that when

Ly = y(4) we have that hypothesis (H) holds.
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Chapter 4

Applications to Difference Equations

I) INTRODUCTION

In this chapter we will show how the results from our last chapter will also

hold for an n-th order linear difference equation. Many of the definitions and

notation used will be from Hartman [9], and Hankerson and Peterson [6,7]. In

general, interval notation will specify an interval of integers. So, for example,

[a, b) will mean the set of integers {a, a + 1, a + 2,..., b - 2, b - 1}.

Let n be an integer greater than or equal to two and k a fixed integer with

1 < k < n - 1. We define the n-th order linear difference equation

n

(1) Ly(t) Z-- ai(t)y(t - k+i) = 0, t E [a k, b+ k]
i=0

where we assume the coefficients ai(t) are defined on [a+k, b+k], for i = 1, 2,... , n,

an(t) = 1, and a.(t) satisfies

(2) (-1)"a.(t) > 0,

for t E [a + k. b + k]. We note that solutions to our differcncc equation (1) are

defined on [a, b + n].
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Condition (2) implies ao(t) # 0 for all t E [a + k, b + k], and this guarantees

that solutions to the intital value problem

Ly(t) = h(t)

y(t. + i) = y', 0 < i < n -,

for t. E [a, b], exist on [a, b + n], and that (1) has exactly n independent solutions

on [a, b + n].

We define the difference operator A, by Ay(t) = y(t + 1) - y(t). We can then

recursively define the operators Aiy(t) = A(Ai-ly(t)) for i = 1,2,..., where it

is understood that A0 y(t) = y(t). We note that by induction, we can also define

0 the the ith order difference operator A i , by
i

Aiy(t) = Z(-1Y (.) 1y(t + i - j).

j=0

Hartman [9] gives us the following definition.

Definition: Let y(t) be a solution of (1). We say that y has a generalized zero at

t. if either y(t.) = 0 or there exists an integer j, with 1 < j < t. - a such that

(-1)y(t. - j)y(t.) > 0, and, if j > 1,

y(t) = 0, fort. -j< t <t..

II) THE GREEN'S FUNCTION:

Let rn > I and detine the n-th order vector difference equation Lu(t)

S =oc i(tlu(t - k + i), t E [a + k, b + k] where u(t) is an m-column vector such
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that u: [a,b + n] --- 7R.m and the ai's are as in (1). Also, let P(t) = (pij(t)),

Q(t) = (qij(t)) be discrete m x m matrix functions on [a + k, b + k] and let

a= tj <t2 <'"..< t =b+L.

We consider the n-point right focal eigenvalue problem:

(3) (-1)"-Lu = AP(t)u

Tu = O,

where Tu = 0 denotes the boundary conditions A'-y(ti) = 0, i = 1, 2,... , n, and

a = t1 < t 2 < -. < t,, = b + 1. The Green's function for the scalar difference

boundary value problem

(4) (-1)-ILy = 0

Ty=0

where Ly and Ty are as above, but defined appropriately for the scalar case, has

different properties then its differential equation analog. These properties, given

in Hartman [9], are in the following lemma.

LEMMA 1. Suppose the function G(t, s) has the properties:

i) G(t,s) is defined on [a,b] x [a + k,b+ k];

ii) For each fixed s E [a + k,b+ k], LG(t,s) = (-)- 16 t, for all t E [a,b + n],

where ,. is the Kronecker-delta function;

iii) For each fixed s E [a + k,b+ k], Ai-'G(ti,s) =0, i = 1,2,...,n.
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Then, for h(t) defined on [a + k, b + k], we have that y(t) = ZI+k G(t, s)h(s)

solves 

=~

(-1)"-ILy(t) = h(t)

Ty=O.

PROOF: The proof is straight forward. For t E [a + k, b + k],

/ b+k

(-1)n-'Ly(t) = (-1)n-L( E G(t,s)h(s)
Xs=a+ k

b+k

= (-1) " - 1 LG(t, s)h(s)
s=a+k

b+k

s=a+k

= h(t)

The boundary conditions are satisfied by condition iii) in our definition.

Similiar to differential equations, we now define what it means for a difference

equation to be right disfocal.

Definition: The difference equation Ly = 0 is said to be right disfocal on an

interval [a, b + n], if there does not exist a nontrivial solution y of Ly = 0 and

points tI < t2 < ... s t, E [a, b + 1], such that Ai-ly has a generalized zero at ti,

<i<n.

We now introduce some more notation. For each fixed integer s in the interval

[a, b + 1], let {yo(t, s), yj (t, s),... , y,-I (t, s)} be the set of (linearly independent)
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solutions of Ly = 0, where Aiy(t,s)Ito = 6jk, 0 < j,k < n - 1. This tells us

that yj(t,s) hasj zeros, at s,s+ 1,...,s +j - 1 and yj(s +j,s)=1.

One more final bit of notation. For j = 1, 2,..., n - 1, define the interval Ij

of integers by

[t, + k,t 2 + k- 1], for j 1
I= [tj + k - l , t j + l + k - l ] , for2<j:n-1.

Let Ly = 0 be right disfocal. Then, for each fixed s E I,, t E [a, b + n], we

define the functions uj(t), vj(t), for j = 1,2,..., n - 1, by

0 Y1(t, tj) ... y , _ (t,t,)

0 AY1(t2, t) ... A .- 1(t2,t)

D(t) D A j Y,_ (t+ , S)  A jy(tj+l,t )  ... A jY .,_ (tj+l,,t)

An--,Yn-_(tn, S) An -'Y1(tn, t1) .. An- -,._(tn, t1)

where 9 = s - k + 1 and vj(t) is the same as uj(t) except we replace the zero in

the first row first column by , (t, s - k + 1). In the above formula, D is given

by
Ay 1 (t 2 , 1) Ay 2 (t 2 , 1) ... AYn-l(t2, tl

A 2 Y1 (t 3 , tl) A 2 y2 (t 3 , t) ... A2y-1 (t.3, t,
D=

A,"-1Y1(tn, t, ) A,"- Y2(t,). "-' Y,-_,(tn, ti

The functions ui, vi, j = 1, 2,..., n - 1, are well defined provided that D -$ 0.

As in the last chapter, Ly = 0 being right disfocal guarantees us that D # 0.

0 To see this, we again suppose that D = 0, and let A = (Aiyj(ti+1 ',t)), for
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1 < i,j < n - 1. Then we have that JAI = D, where JAI is the determinant of A.

Since D = 0, that is JAI = 0, we know that there exists a nontrivial column vector

C = (C 1 ,C 2 ,... ,C._l)T so that AC5 = 0. Let z(t) = Clyi(t, ti) + C 2y2 (t, ti1 ) +

• + Cn-1yn-1(t, t). Since z(t) is a linear combination of solutions of Ly = 0,

we have by linearity of L, that Lz = 0. Now z(ti) = 0 since yj(t, ti) = 0 for each

j = 1,2,...,n - 1. Also, A'z(ti+i) = 0 for i = 1,2,...,n - 1, since A'z(ti+i) is

the i-th row of A times the column vector C, and A45 = 6. Thus, Lz = 0 and

Tz = 0 and z is not identically zero since C5 is nontrivial. This contradicts Ly = 0

is right disfocal. Hence D # 0 and our functions uj, vj, for j = 1, 2,..., n - 1

are well defined. Now that we have established that D # 0, a standard argument

shows that D > 0.

We note that since L is linear, uj, vj are, for each fixed s, solutions of Ly = 0.

With our functions uj, vi defined, we can now go on to define our function G(t, s).

LEMMA 2. Assume that Ly = 0 is right disfocal on [a, b + n]. For each fixed

S E 1j, let

(5)' =) { ,t), for t < s - k + n
vj (t), for t > s - k+ n.

Then G(t, s) satisfies the properties i)-iii) of Lemma 1.

PROOF: We need to show that G(t, s) satisfies:

i) G(t,s) is defined on [a,b+ n] x [a + k,b+ k].

ii) For each fixed s E [a + k,b+ kJ, LG(t,s) = (-1)"-6b, for t E [a,b + n].
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iii) For each fixed s E [a + k, b + k], A' -1 G(t i , s) = 0, for i = 1, 2,..., n.

To show that G(t, s) satisfies these properties, we first note that from the

definitions of u,(t) and vi(t), we have that vj(t)-uj(t) = (- 1)--ly,_.1 (t, s- k+ 1).

Then since y,-i(s - k + 1 + i,s - k + 1) = 0 for i = 0, 1,... ,n - 2, we have that

vj(t) = uj(t) for t E [s - k + 1, s - k + n - 1]. Thus we can similarly define G(t, s)

as

f u,(t), for t < s - k + n(6) G(t,s)
vj (t), for t > s - k + 1.

It is clear from our definition of uj(t) and vj(t) that G(t, s) satisfies i). To show

ii), let s be a fixed element of [a + k, b + k], so s E I, for some j. Let t < s. Then

for i = 0,1,... ,n, we havet-k+i < t -k+n <s- k+n, so we get from (1)

and (6) that

LG(t,s) = En=0 a,(t)G(t - k + i,s) = Z a= a ,j(t - k + i) = Lu,(t) = 0, since

uj is a solution of Ly = 0.

Ift > s, then t > s+1, so that for i = 0, 1,...,n, we have t-k+i >

s+1 -k+i > s-k+1, soagainfrom (1) and (6) wehave

LG(t, s) = E'o a,(t)G(t - k + i, s) = E'= a(t)vj(t - k + i) = Lvj(t) = 0, since

vj is a solution of Ly = 0.

Wenowlett=s. Then sinces-k+i<s-k+nfori=0,1,...,n-1,

we have from (6) that G(s - k + i, s) = uj(s - k + i) for i = 0, 1,..., n - 1, and
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G(s - k+n,s) = v,(s- k+n). Then

n

LG(s, s) = E a,(s)G(s - k + i, s)
i=0

n-I

= Z cG(s - k + i, s) + an(s)G(s - k + n, s)
8=0

n-I

= E a(s)u,(s - k + i) + v,(s - k + n), {since an = 1)

n

= v,(s - k + n) - uj,(s - k + n) + 1: cj(s)u,(s - k + i)
i=O

= (-1)"-'yn._(s - k + n,s - k + 1) + Lu,(s)

= (-l)"-'y._l((s - k + 1) + (n - 1),s - k + 1)

~= (_11)_'"

So LG(s,s) = (-1)n- 1.

Since s was an arbitrary element of [a + k, b + k] we have that for each fixed

s E [a + k,b+ k], LG(t,s) = (-1)"-I b,,.

Lastly, we need to show that for each fixed s E [a + k, b+ k], Ai-IG(ti, s) = 0

for i = 1, 2,..., n. Fix s E [a+k, b+k], so s E Ij for somej. Consider G(tj, s). Now

tj + k < s, so t < s - k < s - k + n which gives us from (6) that G(t1 , s) = uj(ti).

Since yj(t,tj) = 0 for j = 1,2,...,n - 1, we have that the top row of the

determinant which defines ui, is all zeros and so G(tj, s) = 0.

Now, consider A'-'G(ti,s) whec t, < tj, i > 2, where this j is such that

s E I. Forr = 0,1,...,i-1, wehavethat ti+ i-1-r < ti+(i-1)
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tj + j- 1 < s-k+1+j-1 (since tj+k-1 <s) < s-k+j < s-k+n, since

j < n-1. So t+i-l -r < s-k+n, for = 0,1,...,i -1. Thus from (6),

G(ti +i - 1 -r,s) = uj(ti -1- r). Hence, if we let =s - k + 1 then

Ai-lG(t,,s) = A'-lui(ti)

0 Ai-iyi(ti'ti) ... Ai-lV,,_l(tj'tj)

0 Ay, (tiI,l ...- A ,_(ti, ti)

D A- n--1)n
-

"..tnS n-Y~t~l A -1_(tn, t1)

-0,

since the first and the i-th row are equal. Thus we have shown that A'- G(t ,, s) =

0 for i=1,,...,j.

Now let j < i < n so tj+l < ti. Then for r = 0, 1,...,i-1,

t2 + i - 1 -- > ti

> tj+1

> s- k + 1, since s < t+l + k -1.

Thus by (G) we have G(t, + i - 1 - 7, s) = vj(ti + i - 1 - 7). Hence, if we again

let =s-k+l, then

A-a(ti,s) = A'-'vj(ti)

Ai-Yn-l(ti,S) mi- ll(ti, t1) ... Ai-'yn_1(ti,t1)
0 AY1 (ti,,t1) ... AYn-_l(ti, t1)

'.- yn ltSn 1 1(nt)A -1y._-(t., ti)
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since the first and the i-th row are equal. Thus we have shown that A i- 1 G(t i, s) =

0 for j < i < n. Combining the last two cases, we have shown that A' -'G(t i , s) =

0 for i = 1,2,... , n. Since s was a fixed but arbitrary element of [a + k, b + k],

we have shown that G(t, s) satisfies condition iii) and this completes the proof of

Lemma 2.

It is easy to see that if Ly = 0 is right disfocal, then the function G(t, s) from

Lemma 2 is unique. For suppose that H(t, s) satisfies the properties i)-iii). Then

for s a fixed but arbitrary element of [t1 + k, t, + k], define the function w(t) =

G(t, s) - H(t, s). From property ii), we have that Lw(t) = L(G(t, s) - H(t, s)) =

LG(t,s) - LH(t,s) = (-1)n- 1 b,. - (-1)n-16 ,, = 0. Also Aiw(t) = A'G(t,s) -

AiH(t,s), so from property iii) we have that Ai-lw(ti) = 0 for i 1,2,... ,n.

Thus since Ly = 0 is right disfocal we must have that w(t) = 0 for all t E [a, b+n],

and since s was an arbitrary element of [a + k, b+ k] we have that G(t, s) = H(t, s)

on [a, b + nj x [a + k, b + k]. Hence G(t, s) is unique.

We now define the Green's function for the boundary value problem (4).

Definition: If Ly = 0 is right disfocal, then the function satisfying the properties

i)-iii) of Lemma 1, is called the Green's function, G(t, s), for the boundary value

problem (4).

This definition will allow us to summerize the last two lemmas in the following

theorem.

THEOREM 3. If Ly = 0 is right disfocal on [a, b + n], then the boundary value
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problem

(-1) n1 ILy = h(t)

Ai-Iy(ti) = 0, fori = 1,2,...,n

has a unique solution, y(t), given by

b+k

y(t) = Z G(t, s)h(s), t E [a, b + n]
s=a-4k

where G(t, s) is the Green's function for (-1)" -1 Ly = 0, A' - ' y(ti) 0, 1 < i < n,

and is given by (6).

We will close this section with the following hypothesis.

Hvpothesis (H): Let the difference equation Ly = 0 be right disfocal on [a, b + n].

We will assume that the Green's function for (4) satisfies G(t, s) > 0 for t E

(a,b+n], sE [a + k,b+ k].

This hypothesis is not true in all cases, but we will show sufficient conditions

for (H) to hold for n = 2,3 and 4.

III)EXISTENCE AND COMPARISON THEOREMS

Our results for difference equations are similar to those for differential equa-

tions. We must first introduce a suitable Banach space for our difference equa-

tion, eigenvalue problem (3). Let B = {u : [a + k,b + k] - IZm} with norm

]lull = max[a+k,b+k] Iu(t)I, where I [ is the Euclidean norm. Following the

ideas from Hankerson and Peterson [6,7], and papers by Tomastik [17,18], we
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let I,J C {1,2,...,m} be such that IUJ {1,2,...,m) andIJ= (It is

permissible for I = 0 or J = 0.) Let C be the 'quadrant' cone in R"m defined by

C = {X = (Xi,X 2 ,...,Xm)IXi _ 0 ifi E I, xi < 0 ifi E J}.

Although some of our results will hold for any solid cone in R/m, we will just

concern ourselves with AC being a 'quadrant' cone in 7Zm. Define bi to be the

discrete function 6i = 1 if i E I and 6i = -1 if i E J. We can then equivalently

define the cone AC to be IC = {x E 7Zm 16 ixi > 0 for i = 1, 2,..., m). With this

notation, the interior of AC can be described by )Cc = X E Rm I .i > 0, i -

1,2,... ,m}.

We can now define the reproducing cone P C B by P = {u E B I u(t) E k, t E

[a -'- k,b + k]} or equivalently by P = {u E B 6iui(t) > 0, i = 1,2,..., m;t E

[a + k, b + kJ}. The interior of our cone P is now given in the next lemma.

LEMMA 4. Let 7' be the cone in the Banach space B as defined above. The interior

of P is given by

P 0 it Bl(t) E 0,t E (a + k,b+ kI},

or equivalently

*= {u E B 1 iui(t) > 0,t E (a+ k,b+ k]}.

PROOF: Let Q = {u E B I6iu(t) > 0,t E (a + k,b + kJ}. We will show that

Q = 7*. First let u E Q. Then bui(t) > 0 for t E (ti, t, + n]. So if we let
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f = minI<,<m {min(a+k,b+kj lui(t)Il, then e > 0 since u(t) is a discrete function.

Now, let y E B(u; E), so IIu - yjj < E. If y E P then we are done, so assume that

y g P. Then, there exists a t. so that y(t.) V* for some t. E (a + k, b + k],

which means that 6.yj.(t.) < 0 for some i. E {1,2,...,m). Since Ilu - Yll < e,

we have that

> u(t.) - y(t)

= (E(U,(to) 
- y(t))2

"i=1

Slui. (t.) - Y,. (ti).

So -e < ui.(t.) - yi.(t.) < e. First, suppose 6io = 1. Then we have that bi.e =

f > 5i° u,* (t.) - bi. yi. (t.) u,* (t.) since O,* yi. (t.) < 0. But this contradicts the

fact that f = minl<i<,m {min(a+k,b+k]Iui(t)} < lui.(t,)l = ui.(t0 ), since 6i. = 1.

So if bi° = 1, we have a contradiction. Now suppose that bi° = -1. From

above we have that bi°(-f) > 6i. uio(t.) - 6biyi°(t.) > bi.f and from this we get

that c > 6j. u . (t.) since -&. yi. (t.) > 0. But again this contradicts the minimal-

ity of E. Hence 6. is not equal to either 1 or -1 which again is a contradiction,

which means that our original assumption that there exists a t. and a 1. so that

8i. yio (t.) < 0 is false. Thus y E P and since y was arbitrary, we have that

B(u; e) C P and so u E P*. So we have shown that Q C P*.

Now let u E P0 and we will show that u E Q. Suppose u V Q, so that there

exists a t. E [a + k,b + k] and an i. E {1,2,...,m} so that 6,o.,(t.) = 0, so

is ui.(t.) = 0, (clearly if 6.uj.(t.) < 0 then u P which contradicts u E P0 ).
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Since u E P*, there exists an e so that B(u; f) C P. Let y(t) be such that

y(t) = u(t) if t # t. and when t = t., let yi(to) = ui(to) for i 5 io and finally, let

6io yi. (t.) = -t. This gives us

IIu- YI = max { max Iu:(t)- y(t)I1
I<t<m tE(a+k,b+k]

= max {ui(tio)- yi(ti)

= Iu. (ti.) - (i

= , since ui.(t.) = 0

Hence Iju-yll = 2 < e so we have that y E B(u;e) C P. But Si yi. (t,)= -2 <0

so y V P which is a contradiction. So we must have that 6,ui(t) > 0 for all

1 < i < m and t E (a + k,b + k], that is u E Q. Thus since we have shown that

Q C 7:* and W* C Q we have that P0 = Q and our lemma is proved.

We now state our first existence result for our boundary value problem (3).

THEOREM 5. Assume hypothesis (H) holds, bibjpij(t) _ 0, for t E [a + k, b + k],

1 < i,j <_ m and that there isat. E [a+k,b+k] andan i. such that pi.. (t.) > 0.

Then for the eigenvalue problem (3), there exists an eigenvector z. E P with

corresponding positive eigenvalue A. which is a lower bound for the modulus of

any other eigenvalue for this eigenvalue problem. Furthermore, biz(t)i > 0, for all

t E [a,b+ n], i =1,2,...,m, that is z(t) E f for all t E [a,b+ n].
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PROOF: We define the linear operator M : B B by

b+k

Mu(t) = E G(t,s)P(s)u(s), fort E [a+k,b+k],
s=a+k

where G(t, s) is the Green's function for (4). We note that the eigenvalues of

boundary value problem (1) are reciprocals of the operator M, and that zero is

not an eigenvalue of (3) since Ly = 0 is right disfocal. We also note that since

G(t, s) is defined for all t E [a, b + n], we have that Mu(t) is well defined on

[a,b+n].

We will now show that our compact operator M, is a positive operator, that

is, M : P -P P. Let u be an arbitrary element of 1'. If we can show that

bi(MAfu(t))i > 0 for all t E [t1,tn + n], i = 1,2,... ,m, where (Mu(t))i denotes

the i-th component of Mu(t), then Mu E P. Consider the i-th component of

P(t)u(t), (P(t)u(t))i = 'j pij(t)ui(t). Now j6bj = 1 and bjuj(t) > 0 so we

have that for all t E [a+k,b+kj, 6i(P(t)u(t))j = E', .ijpij(t)juj(t) 0, since

bi6jpij(t) >_ 0 by hypothesis. From hypothesis (H), we have that G(t, s) > 0 on

[a,b+n]x[a+k,b+k]. Thus bi(Mlu)i(t) = ZG(t, s) -mIi b6 p,,()6juy(t) >E=a+k j=,,i~~t u()>

0, for all t E [a, b+n], i = 1,2,..., m. Thus Mu E P, and since u was an arbitrary

element of P, we have that M is a positive operator.

In order to apply Theorem 1.6, of Chapter 1, we must find a nontrivial u. E

P, and an e. > 0 so that Mu. > C.u.. Let u.(t) = 6i.ei., where e. is the

unit vector in Z"' in the i. direction. This gives us that the Jth component of

(Uo(t))j = bi. ij, where bij is the Kronecker delta function. Thus bj(uo(t))j
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{bJ6 . }64i, > 0, so uo E P. We note that 6i. (u°(t))j. = 1 > 0, on [a + k, b + k]

and that bi(uo(t)) = 0 for all other j.

We now consider Muo(t). Since M :' -* , we know that 6,(Muo),(t) >

0 = j(uo(t))j for 1 < j < m, j : io. When j =i we have that

b+k m

6.(Muo).(t) = E G(t,s) 6i*ojPi.j(S)bj(Uo(S))j
a=a+k j=1

b+k

- : G(t, s)6,. 6,*pi* i(s)6,* (uo(t))i*
$s-a+k

b+k

E G(t,s)pi*,.(s)
s-a+k

> 0, for t E [a + k,b+ k],

since by hypothesis (H), G(t, s) > 0 for all t E (a, b + n], s E [a + k, b + k] and

pi. .(to) > 0 for to E [a + k,b+ k]. So we have that 6i. (Muo).(t) > 0 for all

t E [a + k, b + k], and since 6i° (Muo). (t) is a discrete function, we have that

Eo = min[a+k,b+kJ{6o(Muo)j°(t)} > 0. Hence we have that bjo(Muo)a.(t) _ c. =

o( 6 i. (uo(t)),°) for t E [a + k, b + k], since 6i.(uj,'(t)),° = 1. This gives us that

Auo > coU. with respect to the cone P. By applying Theorem 1.6 of Chapter

1, we have that there exists an eigenvector Z. E P with corresponding positive

eigenvalue A. which is an upper bound for the modulus of any other eigenvalue

for this eigenvalue problem. Since the eigenvalues of M are reciprocals of the

eigenvalues of (3), our results follow.

We now show the final conclusions of this theorem, that is, if (A., z.) are
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the eigenpair from above, then z.(t) E K for all t E [a, b + n]. We know that

Mz.(t) = A.z.(t) or z.(t) = (1/A.)Mz.(t) since A. > 0. Thus,

bi(z.(t))i =6(1/A.)(Mz.(t))j

_b+k

-- Z G(t,s) I 6i6jpij(s)j(z0 (s))j
S-a+k j=1

>0, fort E [a,b+n],

since G(t,s) > 0 for all t E [a,b + n], s E [a + k,b + k] and by hypothesis

i6,jpij(t) 0 0, for t E [a+ k,b+ k], 1 < i,j <_ m and 6i(z.(t))i 0 since z(t) E P.

Hence we have that 6iz(t)i > 0, for all t E [a, b + n], i = 1,2,..., m, that is

z(t) E K for all t E [a, b + n].

If we have stronger conditions on P(t), then we get better results.

THEOREM 6. Assume hypothesis (H) holds, bibjpij(t) > 0, 1 < ij : m, for

all t E [a + k, b + k]. Then for the eigenvalue (3), there exists an essentially

unique eigenvector z. in 'P°, and its corresponding eigenvalue is simple, positive

and smaller then the modulus of any other eigenvalue for this eigenvalue problem.

Furthermore, 6iz(t)i > 0, for all t E (a, b + n], i = 1, 2,..., m, that is z(t) E K

for all t E (a, b + n].

PROOF: As in the last proof we define the compact linear operator M by Mu(t) =

Za+k G(t, s)P(s)u(s), t1 < t < t,, + n. We wish to show that M is a uo-positive

operator so that we can apply Theorems 1.8 1.9 of Chapter 1. To show that Al

is uo-positive, we will show that M : P\{0} --. P * , and then apply Lemma 1.5 of



O 111

Chapter 1.

Let u be an arbitrary element of P\{0}. Then, there exists an

io E {1,2,...,m} and a to E [a + k,b+ k] so that ,.ui.(to) > 0. By hypothesis,

for each i = 1, 2,..., m, bibi.piio (t) > 0 on [a + k, b + k]. This gives us that

b6ib.pii.(t)6i.ui.(t.) > 0 for all t E [a + k,b + k], i = 1,2,...,m. Then, by

hypothesis (H) G(t, s) > 0 for all t E (a, b + n], s E [a + k, b + k], we have that for

each i 1, 2,... m

b+k m

5,(Mu)i(t) = E G(t,s)bjjpj(s)uj(s)
s=a+k l

b+k

E G(t, s) i jpij (s)bi uj(s).9=a+k j=1l

b+k>_ G(t.,)bjbj.pj.(s)bjuj.(s)
s=a+k

>0, fort E (a,b+n].

Thus we have that ,i(Mu(t))i > 0 for all t E (a, b + n]. But this give us that

Mu(t) E k* for all t E (a, b + n). In particular we have that Mu(t) E ko for all

t E [a + k, b + k], and so by Theorem 4 of this chapter we have that Mu E P.

Since u was an arbitrary, nontrivial element of P we have that M : P\{0} --+ P*,

so by Lemma 1.5 of Chapter 1 we have that M is a u.-positive operator. Hence

we now apply Theorems 1.8 and 1.9 of Chapter 1, to get that M has an essentially

unique eigenvector z. in P*, and its corresponding eigenvalue is simple, positive

and greater then the modulus of any other eigenvalue for this eigenvalue problem.
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Since the eigenvalues of M are reciprocals of the eigenvalues of (3) we have our

desired results.

Furthermore, from above we have that for any nontrivial u E 7, 6i1(Mu(t)), >

0, for all t E (a, b + n], i = 1, 2,..., m, that is Mu(t) E k ° for all t E (a, b + n].

Hence if (A., zo) are the eigenpair for above, we have that zo(t) = (1/Ao)Mzo(t) E

VO since A. > 0 and our theorem is proven.

We also have comparison results between two focal point difference equation

eigenvalue problems.

THEOREM 7. Let hypothesis (H) hold for the eigenvalue problems (1) and (3).

Also, assume that the matrix functions P(t) and Q(t) have the properties:

a) Thereisanio E {1,2,...,m} andat. E [a+k,b+k] such that pi.i.(t.) > 0;

b) 0 -< bijpij(t) <_ bi biqji(t), fort E [a + k,b+ k], I < i,j <m m;

c) qij(t) >0, fort E [a+k,b+kJ, 1 < i,j <m.

Then there exists smallest positive eigenvalues A., A. of (1) and (3) respec-

tively, both of which are positive, A. a lower bound in modulus and A. strictly

less in modulus then any other eigenvalue for their corresponding problems. If z.

is the eigenvector corresponding to A., then z. E P and in addition, z.(t) E k

for all t E [a, b + n]. Further, A. is a simple eigenvalue and its corresponding

eigenvector, v. belongs to ? * and in fact, v.(t) E )C for all t E (a, b + n].

Moreover, A. < A0 and ifA. = A., then P(t) = Q(t) on [a + k,b + k].
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PROOF: We define the integral operators M, N : B --* B by

b+k b+k
Mu(t) = E G(t,s)P(s)u(s) and Nu(t) = E G(t,s)Q(s)u(s),

B=a+k 9=a+k

where G(t, s) is the Green's function for (4). We know by earlier proofs that

M,N : P --+ P. Now, by Theorem 5, M possesses a positive eigenvalue 1/A.

which is an upper bound, in modulus, for all other eigenvalues of M, and its

corresponding eigenvector z. belongs to P, and in addition, zo(t) E )C for all

t E [a, b + n]. By Theorem 6, we have that N has a positive, simple eigenvalue

1/Ao, which is strictly greater, in modulus, than all other eigenvalues of N, and

its essentially unique eigenvector v. belongs to P°, and in fact, v°(t) E A: for all

t E (a,b+ n].

We will now show that M < N with respect to P. Let u be an arbitrary

element in P. Then for each fixed i E {1, 2,... , m), we have 6,e j(qji(t)-pii(t)) > 0

fort E [a+k,b+k], 1 < < m. Also, since u E 7, we know that 6i(u(t))j 0 for

all t E [a + k, b + k], 1 < j < m. These last two items and the fact that bSjj= 1

gives us that for j = 1,2..., m,

mEZ bi(qij W) - pij (0))(U(t))j > 0

j=1

for t E [a + k, b + k]. Now hypothesis (H) tells us that G(t, s) > 0 on [a, b + n] x

[a + k, b + k], and thus

b+k m

0i E G(t,s) (qij(t)- pjj(t))(u(t))j ! O.
ama+k j---1
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Since i was arbitrary, then each component of Z±=a+k G(t, s)(Q(t) - Pj(t))u(t)

times 6, is nonnegative for all t E [a + k, b + k]. Thus , Z=a+kG(ts)(Q (t) -

Pi(t))u(t) = (N - M)u(t) E C for all t E []. Thus Nu > Mu with respect to the

cone P. Since u was an arbitrary element of P, we have that M < N.

Now (-., Zo) and (-, vo) are eigenpairs of M and N respectively, so we have

that the inequalities of Theorem 1.11, Chapter 1, hold. Also, similiar to the proof

in Theorem 6, we have that N is u.-positive. From above we see that M < N,

and so we can apply Theorem 1.11, Chapter 1 to give us that < ' or A. < A.
-, Ae

Finally, suppose that A. = A. -A- , then Theorem 1.11, Chapter 1 tells us that

z, = kvo for some nonzero scalar k. Then AP(t)zo = Lzo = kLvo = kAQ(t)vo =

AQ(t)z°. Thus AP(t)z° = AQ(t)zo so (Q(t) - P(t))z° = 0 since A # 0. So, for

each i-th component of (Q(t) - P(t))zo = 0,

m

E(qij(t) - pi,(t)(Zo(t)) =0, fort E [a+k, b+k].
j=1

Hence

E-[6i, j(qjM(t) - pj()]61j(zo (t))j = 0, fort E[a+k,b+k],
j=l

and since zo E P 0 we have that 6jZo(t) > 0 for all t E [a + k, b+ k]. This, plus the

fact that 6,6 qi,(t) b,6ipi(t) for t E [a + k, b + k], 1 < i,j < m, gives us that

piT(t) = qjj(t), for alltE a [a + k, b < ij <m.

O Thus we have that P(t) = Q(t) on the interval [a + k, b + k).



115

V) EXAMPLES

In our final section, we will give examples for which hypothesis (H) holds.

Example n=2:

In this example we have k = 1, and Lu(t) = u(t+2)+pl(t)u(t+1)+P2(t)u(t).

Let ti = a and t 2 = b + 1 be elements of any interval [a, b] over which L is right

disfocal. Then, from Theorem 3, our Green's function for (4) is, for t E [tl, t2 + 1],

s [tl + 1,t2J

-1 0 y1(t, t) t < s+1,G(t, s) a Y1024,,) Ay, (t2, S) AY1 (t2, tl )

AY,2,,) Ay, (t2,,s) AY_(t2,tl) I <

To show that hypothesis (H) holds for this example, we will need a difference

equation analog of Rolle's Theorem, which is provided by Hartman [9].

PROPOSITION. Suppose that y(t) has N generalized zeros on [a, b] and that Ay(t)

has M generalized zeros on [a, b - 1]. Then M > N - 1.

Now consider yi (t, s) for any t E [tl, t 2 + 1], s E [tl + 1, t2 j]. We know that

yj (s, s) = 0 and yj (t, s) 54 0 for all t 5 s or else by the preceding proposition we

contradict Ly = 0 is right disfocal. Thus since Ayj(s, s) = 1, we know yj(t, s) < 0

for all t < s and yj(t,s) > 0 for all t > s. We also know that Ayi(t,s) j 0 for all

t > s or else we again have a contradiction. Thus we have that Ay (t, s) > 0 for

all t > s.
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Then, when t < s + 1 we have that

G(t, s) = {1f-AY1 (t 2, S)yi (t, ti )
AY1 (t 2 , tl)

AY 1 (t 2 , tl)

So G(t s) > 0 on [t 1 , s + 1) and positive when t I < t < s + 1

Now suppose that t > .s. Then

G(t, s) = - 1 f Y1 (t, S)AY1 (t2 , t1) -Y ~(t 2 , .S)Y1 (t, t1 )

From the previous case we know that G(s, s) > 0. Suppose we define z(t) "o

be z(t) = AY1 (t2, S)Y1(t, tl ) - Y1 (t, S)AYI (t2 , ti). Then z(s) > 0 and AZ(t 2 ) = 0.

Then since z(t) is a solution of Ly =0, we must have that z(t) > 0 for tE [S, t 2].-

Further, AZ(t 2 ) = Z(t2 + 1) - Z(t2 ) =0 and so Z(t2 + 1) > 0.

Thus G(t, s) > 0 for t E (t 1 , t 2 + 1), s E [tl + 1, t2 ] and hence we have that

wVhen n = 2, hypothesis (H) holds over any interval on which Ly = 0 is right

disfocal.

In our next two examples we will take L to be Ly = Any. We note here that

when Ly = Any, then Ly = 0 is right disfocal over any interval L.

We will now need what is known as the facto ral function. This function, j(k),

is defined as follows:

a) ifk =1 ,3 . h ntk t-1( )..( )
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b) if k = 0, then t(°) = 1;

c) if k = -1, -2, -3,... then t ( ' ) = ( 1+(+)( k

d) if k is not an integer, then t(k) = r(t+) where r(t) is the gamma function.

It is understood that the definition of t(k) is given only for those values of t

and k which make the formula meaningful. We note that for k a positive integer,

we have that

At (k) = (t + 1)(k) - t(k)

= (t + 1)t(k- 1) -t(t - 1)... (t-k + 1)

=(t + 1)t(k- 1) t(k-1)(t - k + 1)

=k t ( k- 1) .

So At(k) = kt(k - 1). This property and induction gives us, for j an integer, if

j < k, then Ajt(k) = k(k - 1)... (k - j + 1)t(k-J); if j = k then Akt(k) = k1-

and if j > k thcn Ait(k) = 0. Let s be a fixed element of [t1 + k, t" + k] and

define yk(t,s) - (t -)(k)/k!, for each k = 1,2,... ,n -1. Then Yk is a solution

to the intitial value problem Ly = 0, Ayk = 6,k, 0 j < n - 1. With this in

mind, we will take our set of n linearly independent solutions to Ly = 0 to be

{J, y (t,S),. . ., _(t,S)}.

This will simplify our Green's function considerably, since by the properties

of the factoral function we have that AJyk = Yk-j, for j < k and A)yk = 0 for

0 j > k. Further, this gives us, like in Chapter 3, that D = 1.
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Example n = 3:

When n = 3 our difference equation is (-1)"-'Ly = 0 Ly = A 3y with

boundary conditions y(tl) = Ay(t 2 ) = A 2 y(t 3 ) = 0, where a = tj < t 2 < t 3 =

b+1. We will show, that Hypothesis (H) holds under the condition that (t 2 -t 1 ) >

(t3 -t 2 ). It is not too difficult to show that if (t2 -t1) < (t 3 - t2), then hypothesis

(H) does not hold.

From Lemma 2 we have that for this equation, our Green's function for t E

[tl, t3 + 2], is

for s E [ti + k, t 2 + k- 1]
0 Y(t, tl) y2(t, tl)

yi(t2,s - k + 1) 1 y(t 2 ,t1) t<s-k+3,

1 0 1

y2 (t,s - k + 1) yl(t,tl) y2(t,tl)

y1(t 2 ,s - k + 1) 1 y1(t 2 ,t1) s- k + 1 < t,
1 0 1

G(t, s) 1

for s E [t2 + k - 1,t 3 + k - 1]
0 Yi (t, t) Y2 (t, tl)

0 1 y1(t2, t l) t<s-k+3,
1 0 1

y2 (t,s-k + 1) yl(t,tl) y2 (t,tl)
0 1 y1(t2,t1) s-k+1<t.

1 0 1

For Hypothesis (H) we need to show that G(t,s) > 0 for t E (t 1 ,t 3 + 2], s E
O [ti + k, t3 + k - 1]. We will first show that AG(tj, s) > 0 for s E [t, + k, t3 + k - 1].
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First, let s E [t, + k, t2 + k - 1]. Then we have

0 AY1(t1,t1) AY2(tl,tl)

AG(ti,s) = yl(t 2,s - k + 1) 1 y1 (t 2,tl)

1 0 1

0 1 0
= yI(t2,s-k+l) 1 yI(t 2 ,tl)

1 0 1
yi(t2,s-k+1) yj (t2, tl)1- 1 1 = yi(t2,t)- y1(t2,s- k + 1)

= -t 1)-(t 2 -(s-k+ 1))=s-k+ 1-t

(ti + k) - k + 1 - = 1 > 0.

If we have that s E [t2 + k - 1,t 3 + k - 1], then

0 Ay1(tit,) A 2(t,tl) 0 1 0
AG(t,s) 0 1 y1(t2,i1) = 0 1 y1(t2,ti)

1 0 1 1 0 1

1 y,(t 2,t1) =y 1(t2,t) = (t2 -t,) >0.

Thus for s E [t1 + k, t3 + k - 1] we have that AG(tj, s) > 0.

We will now show why the condition (t2 - t1 ) > (t3 -- t 2 ) will insure us that

G(t, s) > 0 for t E (t I, t3 + 2], s E [t, + k, t3 + k- 1). We have two cases to consider,

when S E [t, + k,t2 + k- 1] and s E [t2 + k - 1,t 3 + k- 1].

Case 1) Fix s E [t, + k,t2 + k-1].

If t E (tj, s - k + 3) then we have G(ti, s) = 0, AG(tj, s) > 0 and

0 0 1

A2 G(t,s)= yI(t 2,s-k+l) 1 y1(t 2,t1) =-1.
1 0 1
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So A2 G(t, s) < 0 and hence AG(t, s) is a decreasing function on (ti, s - k + 3).

But G(ti, s) = 0 and AG(t1 , s) > 0. Thus, if G(s, s) > 0, then G(t, s) > 0 for all

t E (ti,s-k+3). Now, if we can show that G(t,s) > 0 for all t E [s-k+1,t 3 +2]

then we will have that G(t, s) > 0 for all t E (tI, t3 + 3], s fixed in [t, + k, t 2 + k -].

Let t E - k+ 1,t 3 +2] and define f(t) on [tl,t 3 +2j by

y2(t,s - k + 1) yi(t, ti) Y2 (t, t1 )

f(t) = yI(t 2,s-k+ ) 1 y(t 2 ,t6)
1 0 1

Now f(t) = G(t,s) for t E Is - k + 1,t 3 + 2]. Thus, f(t) is a solution to our

differential equation Ly = 0 and satisfies the boundary conditions Af(t 2 ) = 0 and

A2 f(t) = 0. Since A 3 f(t) = 0, /2f(t) is equal to a constant. But A 2 f(t 3 ) = 0

so A 2f(t) =- 0 and so Af(t) is equal to a constant. But Af(t 2 ) = 0 so Af(t) 0.

Thus f(t) is equal to a constant on [t1 , t3 + 2]. Evaluating f(t) at tI gives us

y2(t 1,s-k + 1) yI(tl,tl) y2(tl,ti)
f(tI)= y(t 2,s-k+1) 1 y(t 2, t)

1 0 1

y2 (tI, s - k + 1) 0 0

- yI(t 2 ,s-k+i) 1 yl(t2,t 1 ) =y 2 (tl,s-k+l).

1 0 1

Sof(t)= y2(tl,s-k+l)=(t,-(s-k+l))2)/2! =-(t 1 -s+k-1)(ti-s+k-2).

Now(t,-s+k-2) < (t,-s+k-1) < (tl-(tl+k-1)+k-1) = 0, sinces > tj+k-1.

Thus(ti-s+k-2)<(ti-s+k-1)<Osof(tl)= 2(t,s-k+1)> 0. Thus

G(t,s) >0 fort E [s - k+ 1,t 3 +2] when sE ft, + k,t 2 + k-1]. So we have that

S when s E [tj + k, t2 + k - 1], G(t,s) > 0 for all t E (tI,t 3 + 2].
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Case2) Fix s e [t 2 +k-1,t 3 +k-1].

When t < s - k + 3, we have that G(tl,s) - 0, AG(t1,s) > 0, and, like in

Case j., A2G(t,s) = -1. So, like before, we only need to consider G(t,s) wvhcn

t E [s - k + 1,t 3 + 2].

Let t E [s - k + 1, t 3 + 2] and define

y2(t,s-kl+1) yi(t,ti) y2(t,ti)
At) 0 1 y1(t 2 ,t1)

1 0 1

for t E [tl,t 3 + 3]. So f(t) = G(t,s) when t E Is - k + 1, t3 + 3]. Again we know

that A 3f(t) = 0 and that A2f(t3 ) = 0. Thus Af(t) is a constant. Evaluating

Af(t) at s - k + 1 we have

Y(s-k+1,s-k+1) 1 yi(s-k+1,ti)
f(s - k + ) = 1 Y1(t 2 ,t

1 0 1

0 1 yl(s-k+l,tl)
= 0 1 y1(t 2 , t)

1 0 1

= y,(t 2,t 1 ) - yi(s - k + 1,t 1 )

= (t2-ti)((s -k+ 1)-ti)

= t2- s + k - 1 < t 2 - (t 2 + k - 1) + k - 1 = 0.

Thus Af(t) <_ 0 so f(t) is non-increasing on ft 1 , t3 + 2]. So if f(t3 + 2) > 0 then

0 we would have what we want, 0 < f(t) = G(t, s) for t E Is - k + 1, t3 + 2]. If we



122

expand f(t 3 + 2) along the first column, we get

y2(t 3 +2,s-k+1) yI(t 3 +2,ti) y2(t 3 +2,ti)

f(t3 + 2) 0 1 YI (t 2 , 1)

1 0 1

=y 2(t3+2,s-k+l)+ YI(t3+2,t 1 y(t3+ 2 ,ti)

= y2 (t3 + 2,s - k + 1) + {yx(t + 2,t1)y1(t2 ,tI) - y2(t3 + 2,ti)}

(t3 +-s + k)(2) (t+2- tI ) ( - tl ( + 1

= 21- s+ k)( 2 )+ + 2 - i){(t2 -t)-(t 3 -t 2 )-1}.
2! + 2!

Consider the first quantity, ( s = (t3 + 1 k)t =(3 1- +k)2 - s +k)(ts s +k). Now

S < t6 + k - 1 and so (t3 + 1 - s + k) > (t 3 - s + k) >_ ( 3 - (6 + k - 1) + k) = 1.

This gives us that !-(t 3 + 2 - (s - k + 1))(2) > 0.

Since the first quantity is greater than zero, we only need to have the second

quantity greater than or equal to zero. That is, we need 6(t3 + 2- tl){(t2 - t1 )-

(t 3 - t2)-11 > 0. This will occur if {(t 2 - t) - (t - t 2 ) - 1} > 0, that is, if

(t 2 - tI) (t3 - t 2 ) + 1. Thus, since (t 2 - t1 ) > (t 3 - t2 ), we have that f(t) > 0

and so G(t, s) > 0 for all t E (t1 , t6 + 2] and s E [t2 + k - 1, t3 + k - 11.

Hence, combining the two cases, we have that for the boundary value problem,

A 3y(t-k) = 0 and Ty = 0, hypothesis (H) holds provided that (t2 -tI ) > (t 3 -t2).
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Example n = 4:

In our final example of this chapter, we will take our difference equation to be

(-1)n-lLy(t) = _A4y(t - k) = 0, with boundary conditions Ai-'y(ti) = 0, for

i = 1,2,3 and 4. We will show that Hypothesis (H) holds, under the conditions

(t 2 - t1 ) > (t 4 - t 2 ) + 1 and (t 3 - t 2 ) > (t4 - t 3 ) + 1. For our difference equation

when n = 4 we have from Lemma 2 that the Green's function for t E [t I, t4 + 3],

is
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for s E [t + k,t 2 + k- 1]
0 Y1 (t, tl) Y2(t, tl) Y3(t, tl)

y2(t 2 ,s- k + 1) 1 y1 (t 2 , t) y2 (t 2 ,ti)

yi(t3 ,s-k+1) 0 1 y (t3 ,t) t<s-k+4
1 0 0 1

Y3 (t,S - k + 1) yi(t,t1 ) Y2 (t,tl) y 3 (t, tl)

y2 (t 2 ,s- k + 1) 1 y1(t 2 ,t) y 2 (t 2 , t) k+1 <t
yI(t3 ,s-k+1) 0 1 Yi(t 3 ,ti)

1 0 0 1
for s E [t2 + k - 1,t 3 + k - 1]

0 Y1 (t, tl) Y2(t,) tl y3(t, t)

0 1 y (t 2 ,t) y2(t2, t) t <8- k+4

y1(t 3 ,s - k +1) 0 1 yi(t 3 , t)

G(t,s)= 1 0 0 1
Y3(t,s- k + 1) yj(t, t) Y2(t, t) y3(t,tl)

0 1 y(t 2 ,tl) Y2 (t 2 ,tk)

y1(t 3 ,s- k + 1) 0 1 y1(t 3,t 1 ) s-k+1<t

1 0 0 1
for s E [t3 + k - 1,t4 + k- 1

0 Y1 (t,) tl Y2(t,t) Y3 (t, tl)

0 1 y(t 2 ,t) Y2 (t 2 ,tt)

0 0 1 yi(t3 ,ti) t<s-k+4

1 0 0 1

y3 (t,s - k + 1) yi(t,tj) y 2 (t, t) y 3 (t,ti)

0 1 y(t 2 , t) y2(t 2 ,tl)

0 0 1 y1(t 3 ,i1 ) s-k+lt.

1 0 0 1

We will first show that AG(ti,s) > 0 for all s E (t, + k, t4 + k - 1). In all

cases, consider the first row of AG(tj, s),

A .(ti) = (0, AY(t 1 ,t),Ay2(t,,tl),Ay 3(tl,t,)) = (0,1,0,0). If we expand
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AG(t1 , s) along the first row, we have

for s E [t, + k, t2 + k- 1]
y2 (t2,s - k + 1) y 1(t 2,t 1 ) y2 (t 2 ,tI)

y1(t 3 ,s-k+1) 1 y,(t 3 ,t,)

1 0 1

for s E [t2 + k - 1,t 3 + k- 1]

0 Y1 1 (t 2,t 1 ) y2 (t 2 ,tI)

y(t 3,s - k + 1) 1 yi(t3 ,ti)

1 0 1

for s E [t3 + k - 1,t 4 + k - 1]

0 y1 (t2 ,tI) Y2(t2 ,tI)

0 1 Yi(t 3 ,t l )
1 0 1

If we consider AG(ti,s) as a function of s, we can define functions hi(s) on

[ti + k- 1,t 4 + k-1] for i = 1,2,3 to be

y 2 (t 2 ,s - k + 1) yI(t 2 ,tI ) y 2 (t 2 ,tI)

hl(s)= yI(t,s-k+l) 1 yI(t 3 ,ti) fort +k-1 <s <t 4 +k-1
1 0 1

0 y1(t 2 , t) y2 (t2 , t)
h 2(s) = yI(t3 ,s - k + 1) 1 yi(t 3 ,tl) fort, +k-1 <S <st 4 +k- 1

1 0 1

0 y1(t 2 ,t1 ) y2(t 2 , t)

h3(s) = 0 1 yI(t3,tl) for ti + k - I < s < t4 + k - 1.
1 0 1

Then hi(s) = AG(t1 ,s) when s E Ii, for i = 1,2,3. By defining the hi's in this

manner we have that hj(t 2 + k - 1) = h 2(t 2 + k - 1) and h 2 (t3 + k - 1) = h3(s),

since h3 is a constant function. We will need to take the difference, with respect

to s, of these functions and will denote this operator by A,. We note without

proof that Asyk,(t, s) = (-1)jy,j(t, s) if k > j and zero otherwise.
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Now hi(tI +k-1) = 0 since, in this determinant, the first and last columns are
y1(t 2 ,s - k + 1) y(t 2 ,tI) y2 (t 2 ,t)

equal. Also, we have that Ahl(s) = - 1 1 Y1(t3,t ,

0 0 1
so that A, hI(tI + k - 1) = 0 since, in this case, the first and second columns are

1 y(t 2 ,tI) y2 (t 2 ,ti)
equal. Finally, A2hl(s) = 0 1 yi(ts,tl) = 1. The last equation gives

0 0 1
us that A,h is increasing on [t, + k - 1,t 4 + k - 2]. Now Ah(t, + k - 1) = 0

so Ahj > 0 on [t1 + k,t 4 + k - 2]. So hi in increasing on this interval and

hI(tI + k - 1) = 0. Thus we have shown, in particular, that h1(s) > 0 for all s in

[tl + k,t 2 + k - 1].

o Y (t2,t ) y2 (t 2,tI)
Now h2 (S)= - 1 1 Y1(t 3 ,t1 ) = Y=(t 2 ,tI (t2 - t1 ) > 0. So

0 0 1
h2 is an increasing function with h2 (t2 + k - 1) = hl(t 2 + k - 1) > 0. Thus h2 is

positive on [t2 + k - 1, t3 + k - 1].

Finally, h3 is constant and h3 (s) = h2(t3 + k - 1) > 0. So h3 is positive on

[t3 + k - 1, t4 + k - 1]. Putting this all together we have that AG(ti, s) > 0 for

all s in [t1 + k,t 4 + k - 1].

We will now show why the conditions (t 2 -tI) > (t 4 - t 2 ) + 1 and (t 3 - t 2) >

(t4 - t3 ) + 1 insure us that G(t, s) > 0 for t E (tI, t4 + 3], S E (ti + k, t4 + k - 1).

We have three cases to consider.

Casel: Fixs E [t, +k,t 2 +k-1]
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Fort 1 <t <s- -k+1 5s -k+4, wehavethat

0 0 1 y1(t, ti)

A 2 G(t, s) y2(t2,s - k + 1) 1 yI(t2,tI) y2 (t 2 ,tI)
y1(t 3,s - k + 1) 0 1 Y1(t 3 ,tI)

1 0 0 1

0 1 yi(t,ti)
=- y(t 3 ,s-k+1) 1 yl(t3,tl)

1 0 1

= Y1,(t3,S - k + 1) - {yI(t 3,tI) - yI(t,tI)}

= (t3 -(s - k+ 1)) -(t3 -tl) +(t-tl)

= t -(s - k+1)<O5 since t< s- k+l1.

So A2G(t, s) < 0 on (ti, s - k + 1], and hence AG(t, s) is a decreasing function on

(ti, s - k + 11. Now G(t1 , s) = 0 and we have previously shown that AG(t1 , s) > 0.

Thusif G(s - k+ 1,s) >0, then G(t,s) >0 for all t in (tl,s - k+ 1]. So we now

consider G(t, s) for t E [s - k + 1, t4 + 3] and will show that it is positive.

Now, for fixed s, G(t,s) is a solution of Ly = 0 so A4G(t,s) = 0. Thus

A 3 G(t,s) is a constant. But A3G(t4,s) = 0 since G(t,s) satisfies the boundary

conditions. So AG(t, s) = 0 and so A2 G(t, s) is a constant. Now A 2 G(t 3 ,.-) = 0

and so A2G(t, s) =0 0. This gives us that AG(t, s) is a constant. But AG(t 2 , s) = 0

so AG(t,s) =0 . Thus G(t,s) is a constant on [s - k + 1,t 4 + 3].

Now, define f(t) on [t I, t4 + 3] by

y3(t,S - k+ 1) y1(t,ti) y2(t,tI) y3 (t,tI)

A y2(t2,s - k + 1) 1 Y1 (t 2 ,tI) y2 (t 2 ,ti)

YI (t 3,s - k + 1) 0 1 Yx(t3 ,tI)

1 0 0 1
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So we have that f(t) = G(t, s) when t E [s - k + 1,t4 + 4]. Evaluating f at tI

gives us

y3(t,s-k+1) YI(tI,tI) y2(tl,tI) Y3 (ti,tI)

y 2 (t 2 ,S - k + 1) 1 y,(t2,tj) y2 (t 2 , tI)

yI(t 3 ,s - k + 1) 0 1 yl(t3,t1)

1 0 0 1

y3(ti, s - k + 1) 0 0 0

y2(t 2,S- k+1) 1 y1 (t 2 ,t 1 ) y2 (t2 ,ti)

y] (t 3 , s - k + 1) 0 1 yI (t 3 , tI)

1 0 0 1

-- y3 (ti,s - k + 1)= (t-(s -k+ 1))( 3 )

3'

1=3-! (t, - s + k - 1)(t, -s + k - 2)(t, - s + k - 3).

Now, (t,-s+k-3) < (t,-s+k-2) < (t,-s+k-1) < (ti-(ti+k)+k-1)= -1 < 0,

since s E [tj + k,t 2 + k- 1]. Thus f(t,) = - (ti-(s-k+1))( 3 ) >0. Since

f(t) = G(t, s) on [s - k + 1, t4 + 3] and G(t, s) is constant, we have that G(t, s) > 0

on [s - k + 1, t4 + 3]. But, as noted earlier, this implies that G(t, s) > 0 for all

t E (t 1 ,t4 + 3] when s E [tI + k, t2 + k - 1.

Case 2: Fix s E [.2 + k-1, t3 +k- 1]. Let t E (ti,s-k+1] and consider

A2G(t,s). As in Case 1, we have that A2G(t,s) = t - (s - k + 1) < 0. This

can be easily seen since the only difference between this expression and the one

in Case 1, is the element y2(t 2 ,s - k + 1), which lies in the second row, first

column slot. After taking two differences of G(t, s), we will expand along the

second column, which has only one nonzero element, in the second slot. This will

eliminate the y2 (t 2,s - k + 1) term, and A 2 G(t,s) will be the same as in Case 1.
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Thus A2G(t, s) :< 0, since t < s - k + 1. Since G(ti, s) = 0 and AG(t 1 ,s) > 0,

we only have to evaluate G(t, s) at t = s - k + 1. Similar to the last case, we will

now show that G(t, s) > 0 for t E Is - k + 1, t4 + 31.

We now let t E [s - k + 1,t 4 + 3]. We know that G(t,s) is a solution to

A4y = 0 on (s - k + 4, t4 + 3] and satisfies the appropriate boundary conditions.

So we have that A 4G(t,s) - 0 and ASG(t 4 ,s) = A2G(t 3,s) = 0. This gives us

that AG(t, s) is a constant function. Define the function f(t) on It1 , t4 + 3], to be

Y3 (t,s-k+l) YI(t,tl) y2(t,tl) Y3 (t,tl)

0 1 yl(t2,tl) y 2 (t 2 ,tl)f(t) = -

y(t 3,s- k + 1) 0 1 yl(t 3 ,1)

1 0 0 1

So f(t) - G(t, s) when t > s - k + 1. This then gives us that Af(t) is a constant

function. Evaluating _f at t2 and using properties of determinants we have

y2 (t 2,s - k + 1) 1 y1(t 2 ,ti) y2 (t 2 ,tl)

o 1 y,(t2, t) y2 (t 2 ,tl)

yi(t 3 ,s - k + 1) 0 1 yi(t 3, t)

1 0 0 1

y2(t2,s - k + 1) 1 Y1(t 2 ,ti) y2 (t 2 , t)
0 1 Y1(t2,tl) y 2 (t 2 ,t 1 )

0 0 1 y1(t 3, t)

0 0 0 1

0 1 y1(t 2 ,tl) y2(t 2 ,)tl

0 1 y1(t 2 ,tl) y2(t 2 ,tl)

y(t 3,s-k+1) 0 1 y1(t 3 ,t 1 )

1 0 0 1

=-y2(t2,s - k + 1) (t2- (s - k + 1))(2)

2!

0 Now(t 2 -(s-k+ 1))( 2 ) = (t 2 -s+k-1)(t 2 -s+k-2) and sinces > t 2 +k- 1 we
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have that (t2 - - k -2) < (t 2 - s + k-1) :_ (t 2 - (t 2 + k-i) + k-1) = 0. Thus

A f(t 2 ) _< 0 and since Af(t) is constant, we have that Af(t) = AG(t, s) <0. Thus

G(t, s) is a nonincreasing function for t E [s - k + 1, t4 + 3]. So if G(t4 + 4, s) > 0,

then we would have that G(t, s) > 0 for all t in (t1 , t4 + 3].

Consider AoG(t 4 + 3, s) as a function in s for s E [t2 + k - 1, t3 + k - 2]. We

have

-y2( 4 +- 3,,S) yl (t4 +r 3, t1) y2(14 +- 3, ti) y3(t4 +- 3, ti)

01tG(t4 + 3, s) 0 1 Yl(t2 ,tI) y2(t2 ,tl)

-1 0 1 Y1 (t 3 ,tl)

0 0 0

2(t4 +- 3,s - k + 1) y 1 (t 4 + 3,ti) y2 (t 4 + 3,ti)
=0 1 Y (t2,tl)

1 0 1

y2(t 4 + 3,s - .; + 1) + {y 1 (t4 + 3,t,)YI(t 2 ,t1 ) - y2(t4 + 3,t 1 )}

(t4 +3-(- k + ))( ( 4  3 t1)(2 )91 + (t4 +3 -tl)(t2--l ) -( 3 )21

where S = s - k + 1 in the first determinant. Now s E [t2 + k - 1,t 3 + k - 2] so

(t 4 + 3-(s-k + 1))( 2 ) = (t 4 +2-s+k)(t4 +1 -s+k) > 0, since (t 4 +i-s+k) >

(t4 + 1 - (t 3 + k - 2) + k) = (L4 - t3 + 3) > 0. So our first term is positive. The

* second term is nonnegative since
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( 4 + 3- 1(t + 3-

11(t4 + 3 - tl )(t2 - tI) -(t4 + 3 - t, )(t4 + 2 - ti)

1 (t 4 + 3 - ti){2(t2 - t) - (4 + 2-t)}

1 1( 4 +3-tl){(12 -t 1)-( 4 - t 2 )- 2}

>0,

since we required that (t 2 -tI) > ( 4 -t 2 )+ 1. Thus AG(t, s)> 0 for all elements

s E [t2 + k - 1, t3 + k - 2]. This tells us that G(t, s) is an increasing function in s,

and so G(t 4 +3,t 2-+ k-1) <_ G(t 4 +3,s) for all s E [t2 +k-1,t 3 +k-1]. But in our

previous case we proved that G(t, s) > 0 for all t E (tI, t4 + 3], s E (t 1 + k, t2 + k- 1].

Thus, 0 < G(t4 + 3, t 2 + k-1) <_ G(t 4 + 3, s) for all s E [t2 + k - 1,t 3 + k-1]

provided that (t 2 -- .) > (t4 - t2 ) + 1.

Summing up, we have shown that if (t 2 - tI) > (4 - t2 ) + 1, then G(t, s) > 0

for all t in (tI, t4 + 3], s fixed in [t2 + k - 1, t3 + k - 1].

Our final case is when s is an element of [t3 + k - 1,t 4 + k - 1).

Case3: FixsE[t3 +k-1,t 4 +k-1].
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Let t < s - k + 1 and consider A2 G(t, s) which is

0 0 1 yi(t, t )

A 2 G(ts) = - 0 1 yI(t 2 ,t) y 2 (t 2 ,tI)

0 0 1 Y1(t3,tI)

1 0 0 1

0 1 
t(t,t, t= 1 YI(t2, tI) Y2(t2,t )=-1I I(t3,tl)

0 1 Y1(t3,tI)

= yi(t, t) - YI(t 3 ,tI) = (t- tl) - (t3 - t)

= (t- t3).

This gives that A2 G(t,s) :_ 0 on [tl,t 3 ] and A 2G(t,s) _ 0 on [t3,S - k + 1]. Since

G(t , s) = 0 and AG(t1 , s) > 0, all we have to worry about is the sign of G(t, s) for

t E [t 3 ,S + k- 11. We know AG(t 2 ,s) = 0 and A 2G(t,s) = t - t 3 , so AG(t,s) < 0

on (t 2 , t3] and then begins to increase. Now, as it turns out, AG(to, s) = 0 where

t, = t3 + (t3 - t 2) + 1. This can be verified by direct substitution, but the algebra

is exhaustive. (For a motivation of why this t. works, see example 4 of Chapter

3.) Hcnce, for t E (t 2,to) we have that AG(t,s) < 0.

Nowt < s-k+1 < (t4 +k-1)-k+1 = t4. Thust <t 4 < t4 +2 <

t3 + (t 3 - t2 ) + 1 = t., since by hypothesis we have (t4 - t3 ) + 1 < (t3 - t 2 ). Hence

AG(t, s) < 0 on (t 2 ,s - k + 11 and so we have that G(t, s) is a decreasing function

on (t2 ,s + k - 1]. This gives us that if G(s + k - 1,s) > 0, then G(t,s) > 0

for all t E (t 1 , s + k - 1]. Like before, we will now show that G(t, s) > 0 for all

StE [s+k-1,t 4 +3].
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Let t be in the interval [s + k - 1,t 4 + 3] and consider A 2 G(t, s) on [s + k -

1,t 4 + 1],

yi(t,s - k + 1) 0 1 yi(t,ti)

A 2 G(t, S) 0 1 y1(t 2 ,tl) y 2 (t 2 ,tl)

0 0 1 yi(t 3 ,tl)

1 0 0 1

Yi(t,s - k + 1) 1 y(t,ti)

- 0 1 y1(t 3 ,t1)
1 0 1

- -y 1(t,s - k + 1)- {y 1(t3,t1) -y1(t,tl)}

= -(t - (s - k + 1)) - f (t3 - t]) - (t - t] ))

= (s-(t 3 +k- 1)) 0, since s E [t3 +k - 1,t 4 +k -1].

This gives us that AG(t, s) is nondecreasing for t E [s + k - 1,t 4 + 2]. If we

could show that AG(t 4 + 2, s) < 0 then G(t, s) would be a decreasing function on

[s + k - 1,t 4 + 3]. Then, if G(t 4 + 3, s) > 0 we would have that G(t, s) > 0 for

t E [s + k - 1, t 4 + 31. So, we consider

y 2 (t 4 + 2,s - k + 1) 1 yI(t 4 +2,t 1 ) Y2 (t 4 +2,ti)

AG(t 4 + 2, s) =- 0 1 Y1(t 2 , ) y2(t2,t]

0 0 1 y1(t3 ,tl)

1 0 0 1

1 Y1,(t 4 +2,t) y2(t 4 +2,tl)

= -y 2 (t 4 + 2,s - k + 1) + 1 yi(t2 ,tl) y2 (t 2 ,ti)

0 1 Y1(t3, tl)

Examining the first term we have (t 4 + 2 - s + k) > (t 4 + 1 - s + k) >_ (t4 + 2 -

(t 4 + k- 1) + k) = 3 > 0, which gives us that -y 2 (t4 + 2, s - k + 1) < 0. We now
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consider the determinant term. Let the function h(r), be the determinant term

with t1 replaced by r. So

1 y1(t 4 +2, r) y2 (t4 +2,r)

h(r) = 1 y1(t2,r) y2(t2 ,r) , which gives

0 1 Y1 (t3, r)

1 1 y2(t4 + 2,r) 1 y1(i4 + 2, r) yi(t4 + 2, r)

Arh(r) = - 1 1 Y2 (t 2 , r) -1 Yi (t 2, r) Y1 (t 2, r)

0 0 y1(t 3,r) 0 1 1

-0.

Thus h(r) is a constant. Evaluating h at t 2 gives us

1 yl(t4 +2,t 2) y2(t4 +2, t2) 1 y1(t 4 +2,t 2) y2 (t 4 +2, t 2)

h(t2)= 1 y1(t 2,t2) y2(t2,t2) = 1 0 0

0 1 y1(t3 ,t2 ) 0 1 yl(t 3 ,t 2 )

= -{y1(t4 + 2,t2)yl(t3,t2)- y2(t4 + 2, t2)}

(t4 + 2 - t2) (2)

= 2 - (t4 + 2 - t2)(t3 - t2)

(t4 + 2- t2)(4 - t) + (t3 - t2)(-

1= -(t 4 + 2 -t)(4 - t3) + 1 - (3 -

Thus we have that h(t 2 ) < 0, since by hypothesis (t4 - t3) + I < (t3 - t2). Hence,

h(r) < 0 and so our determinant is < 0. This gives us that AG(t 4 + 2, s) < 0,

so we have that G(t, s) is decreasing in t on [s + k - 1,t4 + 3] provided that

(t4 - t3 ) + 1 < (t3 - t 2 ). Hence if G(t4 + 3,s) > 0, then G(t, s) > 0 for all t in

[s + k - 1,t4 + 3].

We now will evaluate G(t 4 + 3, s). If we consider G(t 4 + 3, s) as a function of
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s, and then take the difference with respect to s and let .S = s - k + 1, we get

-- y2t4 -4-3, ) YI(t4 +3,ti) Y2(t4 +3,tj) y3(t4 +3,ti)

0 1 yx(t2,tl) Y2 (t 2 ,tI)AoG(t 4 + 3, s) = -001 itt)

0 0 0t1

= y2(t4 +3,s- k+ 1)= (t4 + 3-(s- k+ 1))(2

= .v (t4 + 2 - s + k) ( 2 ) > 0,

since (t4 +2-s+k) > (t4 +1-s+k) > (t4 +1-(t 4 +k-1)+k) = 2>0. Thus

G(t4 + 3, s) is increasing in s for s in [t3 + k - 1, t4 + k - 1]. This gives us that

G(t 4 + 3,t 3 + k-1) < G(t 4 + 3,s) for all s E It3 + k - 1,t 4 + k-1]. But from

Case 2) we know that G(t 4 + 3, t3 ) > 0 provided that (t 2 - tI) > (t4 - t2 ) + 1.

Hence we have that if (t2 - t1 ) > (t4 - t 2 ) + 1 and (t3 - t2) > (t 4 - t3) + 1 then

G(t,s) >0 for all t E (tl,t 4 + 3], S [t3 +k- 1,t4 + k- 11.

Thus, combining all of our cases, we have shown that if we have (t 2 - tI) >

(t4 - t2) + 1 and (t 3 - t2) > (14 - t3) + 1 then G(t,s) > 0 for all t E (tI,t 4 + 3],

,; E [t1 .- k, t4 + k - 1]. Hence we have that under the conditions stated, hypothesis

(H) holds.

0
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